You are currently viewing the editor's summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Joint strategy for surface chemistry
Recent advances in the development of tip-based microscopy have led to angstrom-scale spatial resolution, but no technique provides univocal characterization of the structural and chemical heterogeneities of surface species. Using a model system of pentacene derivatives on the Ag(110) surface, Xu et al. show that the combination of scanning tunneling microscopy, atomic force microscopy, and tip-enhanced Raman scattering provides the electronic, structural, and chemical information sufficiently correlated for an unambiguous characterization of the different—but structurally similar—chemical species and their interaction with the metal surface with single-bond resolution. The proposed multitechnique approach could find wide application in fundamental studies of heterogeneous catalysis and surface chemistry in general.
Science, this issue p. 818
This is an article distributed under the terms of the Science Journals Default License.