You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Not enough room
Modern carnivore communities include species that span a range of body sizes. For example, on the African savannah, there are small species (mongooses), medium species (wild dogs), and large species (lions). This variation reflects available prey sources that best suit each group. Carnivorous dinosaur communities, however, were missing species that fall into the middle, or mesocarnivore, group as adults. Schroeder et al. looked across communities, space, and time and found that this absence appears to have been driven by the distinctive biology of dinosaurs, in which giant adults start out as tiny hatchlings. Growing juvenile dinosaurs thus filled the other niches and limited trophic species diversity.
Science, this issue p. 941
Abstract
Despite dominating biodiversity in the Mesozoic, dinosaurs were not speciose. Oviparity constrained even gigantic dinosaurs to less than 15 kg at birth; growth through multiple morphologies led to the consumption of different resources at each stage. Such disparity between neonates and adults could have influenced the structure and diversity of dinosaur communities. Here, we quantified this effect for 43 communities across 136 million years and seven continents. We found that megatheropods (more than 1000 kg) such as tyrannosaurs had specific effects on dinosaur community structure. Although herbivores spanned the body size range, communities with megatheropods lacked carnivores weighing 100 to 1000 kg. We demonstrate that juvenile megatheropods likely filled the mesocarnivore niche, resulting in reduced overall taxonomic diversity. The consistency of this pattern suggests that ontogenetic niche shift was an important factor in generating dinosaur community structure and diversity.
This is an article distributed under the terms of the Science Journals Default License.