Report

The human dimension of biodiversity changes on islands

See allHide authors and affiliations

Science  30 Apr 2021:
Vol. 372, Issue 6541, pp. 488-491
DOI: 10.1126/science.abd6706

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Accelerating ecosystem disruption

Oceanic islands are among the most recent areas on Earth to have been colonized by humans, in many cases in just the past few thousand years. Therefore, they are important laboratories for the study of human impacts on natural vegetation and biodiversity. Nogué et al. provide a quantitative palaeoecological study of 27 islands around the world, focusing on pollen records of vegetation composition before and after human arrival. The authors found a consistent pattern of acceleration of vegetation turnover after human invasion, with median rates of change increasing by a factor of six. These changes occurred regardless of geographical and ecological features of the island and show how rapidly ecosystems can change and how island ecosystems are set on new trajectories.

Science, this issue p. 488

Abstract

Islands are among the last regions on Earth settled and transformed by human activities, and they provide replicated model systems for analysis of how people affect ecological functions. By analyzing 27 representative fossil pollen sequences encompassing the past 5000 years from islands globally, we quantified the rates of vegetation compositional change before and after human arrival. After human arrival, rates of turnover accelerate by a median factor of 11, with faster rates on islands colonized in the past 1500 years than for those colonized earlier. This global anthropogenic acceleration in turnover suggests that islands are on trajectories of continuing change. Strategies for biodiversity conservation and ecosystem restoration must acknowledge the long duration of human impacts and the degree to which ecological changes today differ from prehuman dynamics.

View Full Text

Stay Connected to Science