Report

Noncanonical DNA polymerization by aminoadenine-based siphoviruses

See allHide authors and affiliations

Science  30 Apr 2021:
Vol. 372, Issue 6541, pp. 520-524
DOI: 10.1126/science.abe6542

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Biosynthesis and replication, from A to Z

Four nucleobases. adenine (A), cytosine (C), guanine (G), and thymine (T), are usually thought to be invariable in DNA. In bacterial viruses, however, each of the DNA bases have variations that help them to escape degradation by bacterial restriction enzymes. In the genome of cyanophage S-2L, A is completely replaced by diaminopurine (Z), which forms three hydrogen bonds with T and thus creates non–Watson-Crick base pairing in the DNA of this virus (see the Perspective by Grome and Isaacs). Zhou et al. and Sleiman et al. determined the biochemical pathway that produces Z, which revealed more Z genomes in viruses hosted in bacteria distributed widely in the environment and phylogeny. Pezo et al. identified a DNA polymerase that incorporates Z into DNA while rejecting A. These findings enrich our understanding of biodiversity and expand the genetic palette for synthetic biology.

Science, this issue p. 512, 516, 520; see also p. 460

Abstract

Bacteriophage genomes harbor the broadest chemical diversity of nucleobases across all life forms. Certain DNA viruses that infect hosts as diverse as cyanobacteria, proteobacteria, and actinobacteria exhibit wholesale substitution of aminoadenine for adenine, thereby forming three hydrogen bonds with thymine and violating Watson-Crick pairing rules. Aminoadenine-encoded DNA polymerases, homologous to the Klenow fragment of bacterial DNA polymerase I that includes 3′-exonuclease but lacks 5′-exonuclease, were found to preferentially select for aminoadenine instead of adenine in deoxynucleoside triphosphate incorporation templated by thymine. Polymerase genes occur in synteny with genes for a biosynthesis enzyme that produces aminoadenine deoxynucleotides in a wide array of Siphoviridae bacteriophages. Congruent phylogenetic clustering of the polymerases and biosynthesis enzymes suggests that aminoadenine has propagated in DNA alongside adenine since archaic stages of evolution.

View Full Text

Stay Connected to Science