Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries

See allHide authors and affiliations

Science  21 May 2021:
Vol. 372, Issue 6544, pp. 836-840
DOI: 10.1126/science.abd9795

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Engineering suitable redox molecules

In a flow battery, catholyte and anolyte are stored in separate tanks, and pumps are used to circulate the fluids into a stack with electrodes separated by a thin membrane. Such batteries are ideal for large-scale grid storage applications; however, suitable redox molecules are currently limited. Feng et al. used “molecular engineering” to modify an inexpensive precursor (9-fluorenone) as the basis for an organic-based redox flow battery (see the Perspective by Hu and Liu). The authors tested a series of variant molecules in a redox flow battery in which the reactions involve reversible ketone hydrogenation and dehydrogenation in an aqueous electrolyte. These reactions have advantageous features, including two-electron redox and operation in air and at elevated temperatures (50°C), that are more suitable for real-world applications.

Science, abd9795, this issue p. 836; see also abi5911, p. 788


Aqueous redox flow batteries with organic active materials offer an environmentally benign, tunable, and safe route to large-scale energy storage. Development has been limited to a small palette of organics that are aqueous soluble and tend to display the necessary redox reversibility within the water stability window. We show how molecular engineering of fluorenone enables the alcohol electro-oxidation needed for reversible ketone hydrogenation and dehydrogenation at room temperature without the use of a catalyst. Flow batteries based on these fluorenone derivative anolytes operate efficiently and exhibit stable long-term cycling at ambient and mildly increased temperatures in a nondemanding environment. These results expand the palette to include reversible ketone to alcohol conversion but also suggest the potential for identifying other atypical organic redox couple candidates.

View Full Text

Stay Connected to Science