Research Article

Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments

See allHide authors and affiliations

Science  30 Jul 2021:
Vol. 373, Issue 6554, pp. 556-561
DOI: 10.1126/science.abi8668

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A cooler tin selenide

Thermoelectric materials can convert heat into electricity or be used as the basis of cooling devices. Qin et al. found that doping a tin selenide thermoelectric material with lead and sodium improved the room temperature thermoelectric properties, an effect created by manipulation of the electronic bands. The authors showed that the material could be used not only for power generation but also cooling. If optimal contact materials are identified, then this approach may be attractive for future applications.

Science, abi8668, this issue p. 556


Thermoelectric materials transfer heat and electrical energy, hence they are useful for power generation or cooling applications. Many of these materials have narrow bandgaps, especially for cooling applications. We developed SnSe crystals with a wide bandgap (Eg ≈ 33 kBT) with attractive thermoelectric properties through Pb alloying. The momentum and energy multiband alignments promoted by Pb alloying resulted in an ultrahigh power factor of ~75 μW cm–1 K–2 at 300 K, and an average figure of merit ZT of ~1.90. We found that a 31-pair thermoelectric device can produce a power generation efficiency of ~4.4% and a cooling ΔTmax of ~45.7 K. These results demonstrate that wide-bandgap compounds can be used for thermoelectric cooling applications.

View Full Text

Stay Connected to Science