You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Whether a metallic ground state exists in a two-dimensional system beyond Anderson localization remains an unresolved question. Here, we study how quantum phase coherence evolves across superconductor-metal-insulator transitions via magneto-conductance quantum oscillations in nanopatterned high-temperature superconducting films. We tune the degree of phase coherence by varying the etching time of our films. Between the superconducting and insulating regimes, we detect a robust intervening anomalous metallic state characterized by saturating resistance and oscillation amplitude at low temperatures. Our measurements suggest that the anomalous metallic state is bosonic and that the saturation of phase coherence plays a prominent role in its formation.