You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Natural and synthetic nanoparticles composed of five-fold twinned crystals domains have unique properties. The formation mechanism of these five-fold twinned nanoparticles is poorly understood. We used in situ high-resolution transmission electron microscopy combined with molecular dynamics simulations to demonstrate that five-fold twinning occurs via repeated oriented attachment of ~3 nm gold, platinum, and palladium nanoparticles. We discovered two different mechanisms for forming five-fold twinned nanoparticles that are driving by the accumulation and elimination of strain. This was accompanied by decomposition of grain boundaries and the formation of a special class of twins with a net strain of zero. These observations allowed us to develop a quantitative picture of the twinning process. The mechanisms provide guidance for controlling twin structures and morphologies across a wide range of materials.