Report

Stacking-engineered ferroelectricity in bilayer boron nitride

See allHide authors and affiliations

Science  27 May 2021:
eabd3230
DOI: 10.1126/science.abd3230

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

2D ferroelectrics with robust polarization down to atomic thicknesses provide building blocks for functional heterostructures. Experimental realization remains challenging because of the requirement of a layered polar crystal. Here, we demonstrate a rational design approach to engineering 2D ferroelectrics from a non-ferroelectric parent compound via employing van der Waals assembly. Parallel-stacked bilayer boron nitride exhibits out-of-plane electric polarization that reverses depending on the stacking order. The polarization switching is probed via the resistance of an adjacently stacked graphene sheet. Twisting the boron nitride sheets by a small angle changes the dynamics of switching thanks to the formation of moiré ferroelectricity with staggered polarization. The ferroelectricity persists to room temperature while keeping the high mobility of graphene, paving the way for potential ultrathin nonvolatile memory applications.

View Full Text

Stay Connected to Science