the conditions used for the data in Table 2 since it seems likely that the ratio of formation of these two products would be influenced by the physiological state. The data do, however, indicate that ammonia is a better substrate than glutamate for citrulline synthesis, whereas the reverse is true for glutamine synthesis.

The evolutionary precedent for a mitochondrial localization of glutamine synthetase in vertebrate liver was set in the elasmobranchs (14), where the enzyme functions in conjugation with the glutamine-utilizing carbamyl phosphate synthetase-III in the synthesis of urea for osmotic purposes. In amphibians, hepatic mitochondrial ammonia detoxication is via carbamyl phosphate synthetase-I. Immunochemical and other properties of carbamyl phosphate synthetases-I and -III suggest that the two are evolutionarily related (16). The utilization of glutamine synthetase for the intramitochondrial detoxication of ammonia appears not to occur in amphibians, even in those species that excrete a large percentage of their excretory nitrogen as uric acid (17).

However, our data indicate that both systems may have been present in the stem reptiles that subsequently gave rise to the ruling reptile, avian, and mammalian lines of descent. Both carbamyl phosphate synthetase-I and cystolic glutamine synthetase in mammalian liver show a heterogeneous distribution within this organ (18), so whether the same or different populations of tortoise hepatocytes contain both detoxification systems remains a question.

James W. Campbell
Darwin D. Smith, Jr.
Jean E. Vorhaben
Department of Biology,
Rice University,
Houston, Texas 77251

References and Notes
14. Tortoises are predominantly uricotelic in their nitrogen excretion (6). Hence their synthesis of urea could be to prevent water loss by raising the osmolarity of body fluids, such as occurs in elasmobranchs. In the latter species, glutamine synthetase is also a mitochondrial enzyme in liver and provides the substrate for carbamyl phosphate synthetase-I, glutamate-dependent, glutamine-utilizing mitochondrial enzyme (21). For example, Roosen, J. Biol. Chem. 257, 8449 (1982). It was therefore necessary to establish that the carbamyl phosphate synthetase in tortoise liver was enzyme I and not enzyme III. When glutamine was substituted for ammonia in the colorimetric assay for synthetase-I (22), the ammonia-dependent activity was obtained with the Texas tortoise. With a similar assay that contained [14C]carbonate and one in which the acid-stable counts were used as criterion for citrulline formation, 10.9 percent of the ammonia-dependent activity was obtained when glutamine was substituted for ammonia with the desert tortoise. In the latter case, the reaction mixture was determined to have trace amounts of ammonia (0.4 to 0.6 mM). The activity was adenosine triphosphate (ATP)- and N-acetyl-L-glutamate-dependent in both assays. The tortoise enzyme is thus carbamyl phosphate synthetase-I.
19. Tissue fractionation and the assay of glutamine synthetase and the marker enzymes, glutamate dehydrogenase, cytochrome oxidase, lactate dehydrogenase, and 6-phosphogluconate dehydrogenase, were essentially as previously described (1, 10).

Hypertension and Sodium Salts

Whitescarver et al. (1) suggest that "hypertension development in the Dahl S [Dahl salt-sensitive] rat may be more closely related to dietary chloride consumption than to sodium consumption." In drawing this conclusion, the authors overlooked several animal and human studies assessing the effects of potassium chloride on blood pressure.

In the Dahl S rat (2), spontaneously hypertensive rats (3), and albino rats subjected to ligature of the contralateral kidney (Grollman's operation) (4), the addition of potassium chloride to diets containing high levels of sodium chloride mitigates the expected rise in blood pressure. Similarly, the addition of potassium chloride to diets containing "usual" (5) or low sodium (6) levels causes a decrease in blood pressure in mild hypertensives (5) and in normotensives with a family history of hypertension (6).

If chloride were the only electrolyte to affect blood pressure, the addition of potassium chloride to these animal or human diets would, by Whitescarver's theory, raise, not lower, blood pressure. Alternatively, it is possible that chloride does raise blood pressure, but to a far lesser extent than potassium lowers blood pressure, so that the net effect of administering potassium chloride would be to lower blood pressure. MacGregor observed an average decrease of 7 mmHg in systolic blood pressure when he added 60 mmol of KCl to the usual diets of 23 mild hypertensives for 4 weeks (5) and an average increase of 10 mmHg in systolic blood pressure after adding 100 mmol of NaCl to low sodium diets consumed by 23 mild hypertensives for 4 weeks (7). In these experiments, each 100 mmol of KCl lowered blood pressure an average 12 mmHg, and each 100 mmol of NaCl raised systolic blood pressure an average 13 mmHg. If chloride, not sodium, were the pressor component of salt, potassium would have to be roughly twice as potent in lowering blood pressure as chloride is in raising it.

Whitescarver et al. conclude that "the development of hypertension in the Dahl S rat is dependent on the provision of sodium as sodium chloride." This conclusion could only be reached if sodium chloride had been compared with a num-

15 November 1984; accepted 20 December 1985
member of sodium salts, such as sodium citrate, sodium nitrite, sodium phosphate, or sodium benzoate. To date, the authors have only shown that a mixture of sodium bicarbonate and sodium amino acids does not cause hypertension in the Dahl S rat. On the basis of these findings and those of Kurtz and Morris in their study on uninephrectomized rats treated with deoxycorticosterone (8), one could also conclude that sodium raises blood pressure, but that this effect is canceled out by a hypothetical depressor effect of the bicarbonate ion.

We have no problem accepting the results of the two studies. We point out, however, that the effect that they demonstrate may be difficult to reproduce regularly. When Abernethy and one of us (H.G.L.) demonstrated that pressure elevation from sodium bicarbonate-acetate mixtures caused less of an increase in blood pressure than sodium chloride, the rats also gained less weight. When pair feeding was done so that there was no difference in the gain in weight, there was no difference in the gain in blood pressure (9). For the moment, we think that the safest interpretation of these studies is that the use of an anion other than chloride in experimental hypertension in the rat may, in some yet-to-be-defined circumstance, be able to block the blood-pressure-raising effects of sodium, probably by decreasing tubular reabsorption of sodium.

Bonnie F. Liebman
Nutrition Center, Science in the Public Interest, 1501 16th Street, NW Washington, D.C. 20036

Herbert G. Langford
Endocrinology and Hypertension Division, University of Mississippi Medical Center, Jackson 39216

References
18 September 1984; accepted 29 January 1985

Liebman and Langford (1) raise several different issues, not all of which are directly related to our study of Dahl salt-sensitive (Dahl S) rats fed diets containing high concentrations of sodium, with or without chloride (2).

We previously reported that dietary sodium loading with anions other than chloride (either bicarbonate alone or a combination of anions including bicarbonate, phosphate, glycinate, glutamate and aspartate—referred to as NaAA) did not produce hypertension in the Dahl S rat (2, 3). We have recently extended these observations to another model of salt-sensitive hypertension—uninephrectomized rats treated with deoxycorticosterone acetate (DOCA) (4). Blood pressures were higher in rats fed sodium chloride than in rats subjected to comparable sodium loading by means of NaAA. These observations led us to conclude that the full expression of salt-sensitive hypertension in these models is not dependent on dietary sodium alone.

In developing the NaAA diet, we combined a variety of sodium compounds so that, when compared to a high sodium chloride diet, the equivalent sodium loading without chloride would not result in differences in weight gain, arterial pH, net sodium and potassium balance, and plasma concentrations of sodium, potassium, and ionized calcium. At the dietary intakes required, sodium citrate chelates calcium, sodium nitrate results in decreased weight gain, sodium phosphate causes diarrhea, and sodium benzoate is a gastrointestinal irritant. After considerable trial and error, we arrived at the NaAA diet. To determine if lower blood pressures in the NaAA-treated animals might be related to a nonspecific effect of the NaAA diet itself, we studied Sprague-Dawley rats using the “one-kidney, one-clip” model of hypertension (one kidney removed and partial occlusion of the renal artery of the remaining kidney). Groups of these rats received either a high sodium chloride diet or a high NaAA diet (4). Over a 17-day period, both diets caused comparable increases in blood pressure. We therefore conclude that in the Dahl S rat and the DOCA-salt hypertensive rat the absence of hypertension in NaAA-fed animals is specifically related to the lower intake of dietary chloride rather than to some other effect of the NaAA diet itself.

We have also evaluated the effects of selective chloride loading (without sodium) on the development of hypertension in the Dahl S rat (4). Blood pressure increased gradually in animals fed 4 percent sodium chloride but did not increase in animals fed equivalent amounts of chloride provided as glycine chloride. We therefore conclude that in this model the development of hypertension is dependent on the concomitant administration of sodium and chloride.

Our studies are not in conflict with the observations of others that a high dietary potassium intake tends to lower blood pressure, an effect generally attributed to potassium, not chloride. Our observations have implications for the mechanism by which sodium chloride produces hypertension in susceptible hosts.

S. A. Whitescarver
C. E. Ott
B. Jackson

Department of Physiology,
University of Kentucky College of Medicine, Lexington 40536

G. P. Guthrie, Jr.
T. A. Kotchen

Department of Medicine, University of Kentucky College of Medicine

References

25 October 1984; accepted 30 January 1985

Liebman and Langford (1) imply that we, and others, hold that chloride is the pressor component of sodium chloride in the diet. In fact, we proposed the possibility that the anionic component of the sodium salt consumed can be a critical pathogenetic determinant of “sodium-dependent” hypertension. Given our finding that, in rats given deoxycorticosterone (DOC), provision of dietary sodium as sodium chloride induced hypertension whereas provision of dietary sodium as sodium bicarbonate did not, we concluded that it seemed prudent to speak of sodium chloride–dependent hypertension rather than “sodium-dependent” hypertension. We suggested that the pathogenesis of the DOC model of hypertension and other models of “sodium-dependent” hypertension might depend on the chloride component of sodium chloride.

In one sense, Liebman and Langford appear to agree with our suggestion that the anion of a dietary sodium salt can determine the extent to which that sodium salt induces an increase in blood pressure. They “feel that the safest interpretation of these studies [ours (2, 3), and those of Whitescarver et al. (4, 5)] is that the use of an anion other than chloride in experimental hypertension in the rat may, in some yet-to-be-defined circumstance, be able to block the blood-pressure-raising effects of sodium, probably by decreasing tubular reabsorption of sodium.” This formulation, however, assumes that the pressor effect of a sodium salt resides with the sodium ion alone and is critically dependent on its increased renal reabsorption.

In presupposing that sodium is the...
Hypertension and sodium salts
BF Liebman, HG Langford, SA Whitescarver, CE Ott, B Jackson, TW Kurtz and RC Morris Jr

Science 228 (4697), 351-353.
DOI: 10.1126/science.3983634

ARTICLE TOOLS
http://science.sciencemag.org/content/228/4697/351

REFERENCES
This article cites 9 articles, 3 of which you can access for free
http://science.sciencemag.org/content/228/4697/351#BIBL

PERMISSIONS
http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service