Technology for America's Future

Erosion of the competitive position of U.S. industry is well known to U.S. scientists and engineers. Until recently the federal government had paid little heed. Now there are signs that both the White House (see Science, 5 April, p. 20) and influential industrialists are devoting serious attention to the matter. A report issued by the Council on Competitiveness has been followed by a similar document from the Office of Science and Technology Policy. These provide information on our strengths and failures in the many areas of high technology. In what follows are comments based on the council's report.*

In the era immediately following World War II, the United States had a virtual monopoly on new technology. This was fostered by spin-offs from defense R&D. The computer, the electronic components, the machine tool, and the aircraft industries were beneficiaries. Defense R&D gradually ceased to be a stimulus to the civilian economy. Global competition in high technology emerged. In both Japan and Germany the governments identified and fostered new targets for R&D. The pace of development in those countries accelerated. Comparative figures on the percentage of total government R&D budget devoted to various functions are as follows: for industrial development, U.S., 0.2; Japan, 4.8; Germany (figures for West Germany), 14.5; for defense, U.S., 65.6; Japan, 4.8; and Germany, 12.5; for health, U.S., 12.8; Japan, 2.6; Germany, 3.6; for energy, U.S., 3.9; Japan, 22.8; and Germany, 7.8.

These numbers show that the United States is not fostering industrial development directly while competitors are. The realities of today's global markets militate against defense technology being useful in civilian markets. Defense industry is not geared to compete in commercial markets. The council's report states:

Cost-plus contracts, quality control based on inspection rather than process improvement, highly specialized products, limited production runs and restricted markets are the dominant features of defense technology management. By contrast, flexibility, high quality at low cost, volume manufacturing expertise and access to many different markets are the primary concerns of managers in the private sector.

Today's leading-edge technologies in microelectronics, computers, and telecommunications are found, not in Defense Department laboratories, but in private industry. Moreover, consumer products are frequently driving state-of-the-art technology. Instead of industry adapting defense technology break-throughs to commercial markets, the Defense Department is increasingly adapting commercial technology to its needs.

Because foreign competitors have practically eliminated U.S. competition in some areas, the Defense Department finds itself dependent on foreign suppliers for many strategic technologies, including machine tools, electronic components, and integrated circuit fabrication equipment. For national security, to preserve our standard of living, and to create jobs, it is necessary to establish a national goal of fostering civilian high technology. The council's report suggests that this might be accomplished if government, industry, and universities worked together. A key objective pointed to is generic technologies. These often underlie broad classes of products and can be worked on cooperatively ahead of the development of proprietary knowledge.

One of the most valuable features of the report is identification of 21 critical technologies. Critical technologies include electronic and photonics materials, process equipment, microelectronics, software, and computers. Under each of the 21 critical technologies are listed two to ten components and the status of the United States in each. For example, the United States is strong in various aspects of biotechnology and software. It is losing badly, or has lost position, in memory chips and robotics.

A substantial portion of the report is devoted to recommendations for actions by government, industry, and research universities. Perhaps the most important is a request for presidential leadership:

Presidential leadership is . . . essential to success. The President is uniquely positioned to set national priorities, communicate to the American public and directly involve key federal agencies in the effort to address them. Therefore, the full involvement and support of the White House is a key part of the effort to raise technology and competitiveness to a national priority.

—PHILIP H. ABELOSON

Technology for America's Future
PHILIP H. ABELSON

Science 252 (5007), 757.
DOI: 10.1126/science.252.5007.757

ARTICLE TOOLS http://science.sciencemag.org/content/252/5007/757
REFERENCES This article cites 1 articles, 1 of which you can access for free http://science.sciencemag.org/content/252/5007/757#BIBL
PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science is a registered trademark of AAAS. 1991 by the American Association for the Advancement of Science