
23. Pyramidal cells are modeled as identical integrate-and-fire neurons. The membrane potential for each pyramidal cell is given by

\[\tau C \frac{dV(t)}{dt} = -V(t) + V_{\text{rest}} + \Delta v(t) + V_{\text{a}}(t) + V_{\text{m}}(t) \]

and it is reset to \(V_{\text{rest}} = -60 \text{ mV} \) when it exceeds \(V_{\text{p}} = -50 \text{ mV} \), the threshold for spike generation. Because it does not change the qualitative features of the model, we assume that \(\tau \) is small compared to any other time constant, so that

\[V(t) = V_{\text{rest}} + V_{\text{m}}(t) + V_{\text{a}}(t) + V_{\text{m}}(t) \]

The inhibitory interneuron is not explicitly modeled; it is activated by each spike in a pyramidal cell and it inhibits all pyramidal cells. This inhibition is assumed to be a linear superposition of inhibitory postsynaptic potentials, such that

\[V_{\text{m}}(t) = \sum a(t - n) \]

where \(a(t) \) is the time of the nth spike in the network and \(a(t) \) is the alpha function, \(a(t) = a(t) = A \exp(-t/T) \). The membrane potential is linear and the rise time is \(T = 2 \text{ ms} \). \(V_{\text{a}} \) increases from zero after each action potential in cell \(i \).
25. Supported by the W. M. Keck Foundation and NIH grant NS27337. We thank L. Abbott, S. Sternberg, G. Buzsaki, and M. Kahana for extensive discussions. We extend special thanks to R. Linas for pointing out Miller’s work on memory limits.

13 September 1994; accepted 5 January 1995

TECHNICAL COMMENTS

Interhelical Angles in the Solution Structure of the Oligomerization Domain of p53: Correction

We recently presented the solution structure of the oligomerization domain (residues 319–360) of the tumor suppressor p53 using an multidimensional heteronuclear-edited and -filtered nuclear magnetic resonance (NMR) spectroscopy (1). The structure comprised a dimer of dimers, each dimer being formed by two antiparallel helices and an antiparallel \(\beta \) sheet. The two dimers were arranged approximately orthogonal to each other such that the tetramer formed a four-helical bundle with the antiparallel \(\beta \) sheets lying on opposing faces of the molecule. After the determination of the NMR structure, the crystal structure of the oligomerization domain was solved by Nikola Pavletich and his colleagues and kindly provided to us for comparison (2). While the overall topology of the tetramer was the same in the NMR and x-ray structures, a difference in the orientation of the two dimers (that is between the AC dimer and the BD dimer) was observed. Specifically, the angle between the long axes of helices A and B was 114° in the solution structure versus 80° in the crystal structure. Thus, while the structure of the dimer was similar, the root-mean-square (rms) difference between our proposed NMR structure and the x-ray structure for the complete tetramer was large (3 Å). This difference involves a rigid body rotation of one dimer relative to the other about the symmetry axis of the tetramer and is readily appreciated from the ribbon diagrams of the original NMR structure and the x-ray structure (Fig. 1 A and B, respectively). It is important to determine whether a genuine difference between solution and crystal structures exists, or whether a misinterpretation of the NMR data could be the cause of this discrepancy.

To this end, we reexamined our nuclear Overhauser enhancement (NOE) data obtained from both the four-dimensional (4D) \(^{13}C/^{15}N \)-separated and three-dimensional (3D) \(^{13}C/^{13}C \)-separated NOE spectra. We found that, although the partitioning of the intersubunit NOEs was correct, there were three errors in NOE assignments involving contacts between the A and B subunits (and by symmetry between the C and D subunits). Specifically, the weak NOEs between Lys351 (3) and Met340 (4,5), CyH (B), Lys351 (3) and Met340 (4,5), CyH (B), and Lys351 (3) and Met340 (4,5), CuH (B), which were only identified in the 4D \(^{13}C/^{13}C \)-separated NOE spectrum, were a
result of spectral artifacts. Also, key intersubunit NOEs between helices A and B involving the methyl groups of Leu350C8H had been omitted from the NOE restraints list. These included a strong NOE from Leu350C8H(A) to Lys335CaH(B), as well as weak NOEs to Lys334C81H(B) and Glu344C82H(B) (Fig. 2). Even when the three incorrect NOEs were omitted and the structures recalculated, the orientation of the two dimers differed by 25° from that in the crystal structure. Introduction of the new NOEs, however, fully corrected this situation, as can be seen from the ribbon diagram of the new average NMR structure (Fig. 1C) (3).

As a result of these corrections, the difference between the average backbone coordinates of the entire ensemble of NMR structures and the crystal structure for the residues visible in the electron density map is 1.2 Å for the whole tetramer. The precision of the NMR backbone coordinates is 0.45 Å which, assuming no errors in the experimental restraints, translates into a mean coordinate accuracy of 0.9 to 1.1 Å (4). Hence, the two structures are essentially identical within the errors of the present NMR coordinates.

It is instructive to examine the source of the errors in our earlier study (1). Conventionally, in a single chain protein, errors in NOE assignments manifest themselves by inconsistencies. In this particular case, this was not evident, as excellent agreement between the calculated and input values of the NOE, torsion and coupling constant restraints, good nonbonded contacts, and small deviations from idealized covalent geometry, were obtained. Complete cross-validation (5) was of little help, as it did not result in a significant change in the structure because the target function also incorporated symmetry restraints. Finally, the fourfold degeneracy reduced the number of unique NOEs by a factor of 4, thereby increasing the difficulty in ascertaining errors.

Why were three key intersubunit NOEs, Leu350C8H(A) to Lys335CaH(B), Lys351C81H(B) and Glu344C82H(B), omitted from the restraint list, and why did their omission result in a large reorientation of the two dimers? First, the problem with our proposed structure reflected to some extent the limitation of the NMR technique itself, as the main structural parameter, and the only one involved in determining long-range order, involves short (<5 Å) interproton distances derived from the NOE. As the number of observed NOEs between the A and B dimers is limited to 24, propagation of errors can easily occur. This may have been further compounded by our representing the nonbonded contacts by only a repulsive term, which worked to reduce the contact area between the two dimers. Second, two of the crucial NOEs involve two neighboring residues for which intrasubunit NOEs would occur, although in the 3D 13C,-edited 13C-filtered NOE spectrum carried out on the unlabeled-labeled heterotetramer, these should not be observable. We noticed, however, experimental problems with this spectrum. For example, strong cross peaks were observed from the methyl protons of Ala333 and Ala355 to their respective CaH protons despite the fact that the intersubunit separation between these two proton pairs was more than 14 Å. Consequently, we attributed these peaks to artifacts arising from intrasubunit NOEs, possibly as a result of incomplete 13C labeling. The Leu350C8H to Lys335CaH and Lys351C81H peaks were thought to reflect a similar situation. Third, in a single-chain protein, the angle between structural elements corresponding to the two dimers would also be restricted by the limitations imposed by covalent geometry. Last, in a contiguous single polypeptide chain, the three crucial NOEs would correspond to 12 unique NOEs.

The reason for the profound effect of these additional restraints lies to some degree in the orthogonal packing of the two dimers. The large majority of NOE restraints are at the center of the helices, whereas many of those involving Leu350C8H lie at the end of the helices, thereby exerting more leverage on the overall interhelix orientation.

What are the consequences of the correction in angle between the two dimers? First, the overall topology of the tetramer remains the same, and the main thrust and conclusions of our article (1) are unaffected. From a structural viewpoint, however, the packing of the two dimers is slightly better in the new NMR structure and in the crystal structure than in the one we proposed originally (1).

After the submission of this comment, Lee et al. (6) also published an NMR structure of the oligomerization domain. The angle between helices A and B in this structure was 55° to 60° [figure 8D in (6)] compared with 80° and 78° in the x-ray and new NMR structures, respectively, and 114° in the original NMR structure. This illustrates the high degree of technical difficulty in solving the structure of this symmetrical homotetramer by NMR.
Interhelical angles in the solution structure of the oligomerization domain of p53: correction
GM Clore, JG Omichinski, K Sakaguchi, N Zambrano, H Sakamoto, E Appella and AM Gronenborn

Science 267 (5203), 1515-1516,
DOI: 10.1126/science.7878474

ARTICLE TOOLS http://science.sciencemag.org/content/267/5203/1515

REFERENCES This article cites 6 articles, 3 of which you can access for free
http://science.sciencemag.org/content/267/5203/1515#BIBL

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service