Hydrogen-Based Microbial Ecosystems in the Earth

Todd O. Stevens and James P. McKinley (1) report finding hydrogen gas (H₂) of possible geochemical origin, and they propose that this H₂ supports lithotrophic methanogenic bacteria that are physiologically active beneath the Columbia River plateau.

Methanogenic bacteria are ubiquitous in the biosphere's anaerobic habitats (for example, in soils and sediments), and the ability to use H₂ as an electron donor for carbon dioxide reduction to methane is almost universal among methanogens (2). In order for methanogens to be linked to photosynthesis, H₂ is usually produced by an anaerobic microbial food chain responsible for the decay of photosynthetically produced plant materials. But H₂ production is also commonly associated with geothermal activity. Furthermore, a variety of habitats where geothermal H₂ is emitted have been shown to support methanogenic bacteria (2, 3). These previously described microorganisms do precisely what was postulated for the microbial community beneath the Columbia River plateau: They grow in anaerobic habitats at the expense of abiogenic H₂. Thus, as a strictly physiological phenomenon, the subject of Stevens and McKinley's report is not unique.

There are, however, three ecological aspects of the work that merit attention: (i) The proposed H₂ source for methanogenic life was neither biogenic (from an anaerobic food chain) nor geothermal; (ii) C isotopic ratios suggested that methanogenesis was occurring in situ, within the basaltic subsurface deposits; and (iii) lithotrophy (regardless of its aerobic or anaerobic basis) has not been previously reported in subsurface environments. Given the diversity of microbial biogeochemical reactions and efforts by scientists to describe them (4), it is important to place new discoveries within the scholastic context of microbial ecology.

Eugene L. Madsen
Section of Microbiology, Division of Biological Sciences, Cornell University, Ithaca, NY 14853-8101, USA

REFERENCES
5. D. R. Lovley, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
E-mail: dlwley@microbio.umass.edu
6. Francis H. Chapelle
U.S. Geological Survey, 720 Gracem Road, Suite 129, Columbia, SC 29210, USA

Steven and McKinley (1) suggest that H₂ generated from rock weathering supports an autotrophic microbial community in deep anaerobic basaltic aquifers in the western United States. Data about microbial populations, hydrogen concentrations, and carbon isotopes, as well as a laboratory experiment showing H₂ production from a basalt-water interaction, are provided as evidence for this conclusion. However, each of these lines of evidence has an alternative interpretation.

The strongest evidence for the proposed abiological H₂ production (figure 4 of the report (1)) demonstrates that H₂ accumulates when some basals are incubated in buffered water, but these experiments were conducted in phosphate buffer at pH 6, whereas the pH of the ground waters at this site is alkaline (pH = 7.5 to 9.9). It seems likely that H₂ production could be favored by artificially lowering the pH, and so this experiment cannot be used to support the hypothesis (1).

Steven and McKinley suggest that the isotopic signature of the inorganic C dissolved in the ground water also provides evidence for abiological H₂ production. The enrichment of 13C in dissolved inorganic carbon in the methanogenic zones is probably the result of H₂-dependent methanogenesis. However, similar isotopic signals are observed in the methanogenic zone of organic-rich marine sediments in which the source of H₂ is organic matter fermentation (2). Thus, the isotopic data do not uniquely identify these aquifers as ecosystems driven by abiological H₂ production.

Furthermore, Stevens and McKinley state that the ground waters with high sulfate are “depleted in 13C” which “suggests that sulfate-reducing bacteria oxidize biologically fixed carbon, which is relatively rich in 13C.” This statement describes an environment in which degradation of organic matter, rather than consumption of abiotically produced H₂, is fueling microbial metabolism.

High concentrations of H₂ dissolved in the ground water are stated by Stevens and McKinley to be “mostly three or more orders of magnitude above the range . . . that would be expected from microbial fermentation of organic matter.” However, the reference cited (3) states that the H₂ concentrations in anaerobic sedimentary environments are independent of the rate of H₂ production from rates of organic matter fermentation. Thus, high H₂ concentrations are not evidence that H₂ is coming from an abiological source.

Steven and McKinley found that microbial enumerations recovered higher numbers of H₂-consuming microorganisms than fermentative bacteria. However, it is well known that viable counts are unreliable indicators of true microbial numbers and that organic-rich media (such as that used to enumerate the fermentative bacteria) may be toxic to heterotrophic microorganisms living in organic-poor environments such as aquifers.

Finally, Stevens and McKinley state that “the igneous rocks in the study area contained little organic carbon,” suggesting that this is an organic-poor environment. However, given the low rates of microbial metabolism in deep aquifers, a ”little" organic C may go a long way.

The discovery of active H₂-dependent methanogenesis in deep basaltic aquifers of the western United States lends further credence to the suggestion (4) that lithotrophic microbial ecosystems exist in the deep terrestrial subsurface of Earth and possibly other planets. However, there are as yet insufficient data to conclude that H₂ produced from abiological basalt weathering is the primary electron donor supporting the microbial community in these aquifers.

Response: Madsen raises a point about the significance of the microbial communities that we reported within the Columbia River Basin Group (CRB) (1). Certainly, we are not the first to propose that microorganisms can gain energy from oxidation of geochemically produced H₂. Some investigators have even proposed hydrogenotrophy-based ecosystems in the subsurface environment (2). To our knowledge, however, actual evidence for in situ hydrogenotrophic
Hydrogen-Based Microbial Ecosystems in the Earth
Eugene L. Madsen

Science 272 (5263), 896.
DOI: 10.1126/science.272.5263.896a