




response in the bloodstream, but the connection
to wound healing and regeneration is unknown
(28, 29) (Fig. 3 and fig. S10). Scaffold treatment
induced hypertrophy of local draining lymph
nodes (Fig. 3A), which accompanied a robust
increase in Il4 expression (Fig. 3B and fig. S10).

This Il4 induction was absent at 1 week after
injury in Rag1−/− mice but present after 3 weeks,
suggesting an early adaptive immune–dependent
Il4 up-regulation followed by an innate immune–
driven Il4 up-regulation later in the wound heal-
ing and regeneration processes. Additionally,

Cd4−/− mice displayed a significant decrease in
scaffold-mediated Il4 up-regulation in inguinal
lymph nodes at 3 weeks after injury in C-ECM–
treated animals (Fig. 3B). This Il4 expression
level was higher than that in Rag1−/− mice, dem-
onstrating an important role of CD4+ T cells in
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Fig. 2. M(IL-4) pro-regenerative myeloid polarization induced by scaffolds
is TH2-dependent. (A and B) Macrophages in wounded muscle were char-
acterized for CD86 (A) and CD206 (B) expression by flow cytometry at 1 and
3 weeks after injury in the presence of saline or ECM scaffold in WT (blue bars)
and Rag1−/− (red bars) mice. The mean of fluorescence is shown. (C) CD206
expression at 3 weeks after injury in C-ECM–treated WT, Il4ra−/−, Rag1−/−, and
Rag1−/−mice reconstituted with eitherWTCD4+ Tcells (T-WT, n = 2) orRictor−/−

CD4+ Tcells (T-Rictr−/−; TH2-deficient). (D) Representative comparison of CD206
expression betweenWT, Il4ra−/−, Rag1−/−, and Rag1−/− reconstituted withWTand

Rictor−/−CD4+ Tcells. (E) qRT-PCR gene expression analysis in cell-sortedmac-
rophages from wounded muscles 1 week after injury and treated with collagen
(light gray–striped bars), B-ECM (black solid bars), or C-ECM (gray solid bars)
compared to saline control. RQ to saline = 2–DDCt. (F) RQ to saline in WTand
Rag1−/− mice when wounds were treated with C-ECM.The figure shows a loss
of scaffold-mediated macrophage polarization in Rag1−/− mice.WT, blue bars;
Rag1−/−, red bars. Data are means ± SEM, n = 4mice unless otherwise stated
(representative of one or two independent experiments); ANOVA [(A) and (B)]
and Student’s t test (D): ****P <0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.
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scaffold-induced systemic type 2 immunity, but
with potential further contributions by B cells or
CD8+ T cells.

Functionally, WT animals recovered to be able
to run distances similar to those of healthy un-
injured counterparts after 6 weeks (Fig. 4A).

However, this restoration of running capacity
was ablated in the absence of T andB cells (Rag1−/−)
in ECM scaffold–treated wounds. At 3 weeks after

SCIENCE sciencemag.org 15 APRIL 2016 • VOL 352 ISSUE 6283 369

Fig. 3. Systemic immune homeostasis is modified by application of
biomaterial scaffolds. (A) Inguinal lymph node morphology at 1 week
after injury in saline- (left) and C-ECM– (right) treated WT animals.
Hematoxylin and eosin (H&E) staining is shown. (B) qRT-PCR analysis of
Il4 gene expression in local draining lymph nodes (inguinal, top bar graphs)
and distal lymph nodes (axillary/brachial, bottom bar graphs) in WT, Rag1−/−,
and Cd4−/− mice at 1 and 3 weeks after wound treatment with collagen,
B-ECM, or C-ECM. RQ to saline is 2–DDCt. Data are means ± SEM, n = 4 mice
(representative of at least two independent experiments), ANOVA: ****P <
0.0001, **P < 0.01, *P < 0.05.

Fig. 4. TH2/M(IL-4) responses to biomaterial-
treated muscle wound promote functional tis-
sue regeneration. (A) Treadmill exhaustion assay
of mice at 6 weeks after injury to test muscle
function in WT (blue bars) and Rag1−/− (red bars)
mice. Results are normalized to the distance run
by an uninjured control (100 m). n = 5 mice per
condition and genotype. (B) Treadmill exhaustion
at 3 weeks in Cd4−/−, and Rag1−/− mice repopu-
lated with WT (T-WT) or Rictor−/− (T-Rictr−/−; TH2
deficient) CD4+ Tcells. n = 4mice (Cd4−/−) or n =
10 mice (T-WT and T-Rictr−/−) (C) Transverse
section of quadriceps muscle at 6 weeks after
injury in collagen- and C-ECM–treated WT and
Rag1−/− mice. The black arrowheads indicate the
injury/treatment area. A, anterior, P, posterior, with

H&E staining shown. (D) C-ECM–treated VML at 3 weeks after injury in WT, Rag1−/−, and Cd4−/− mice stained with H&E. Small muscle fibers and ectopic
adipogenesis are present in Rag1−/− and Cd4−/− wounds. Scale bars, 50 mm. (E) Gene expression (qRT-PCR) of Adipoq (adipose marker) and Col1a1 (collagen I)
showing increased adipose gene expression in Rag1−/− as well as increased collagen gene expression, suggesting alterations in connective tissue deposition and
possible scarring. n = 4mice unless otherwise stated (representative of at least two independent experiments). Data aremeans ±SEM; ANOVA [(A) and (D)] and
Student’s t test (E): ****P <0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.
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injury, repopulation ofRag1−/−micewithWTTcells
rescued their functional capacity, and the animals
could run greater distances as compared to mice
lacking the CD4 subset (Fig. 4B; 91.11 ± 3.83 versus
60.06 ± 9.69, P = 0.0032). Furthermore, Rag1−/−

mice repopulated withWTCD4 T cells performed
better than those repopulated with Rictor−/− CD4+

T cells (72.31 ± 7.40, P = 0.0368), confirming
the role of TH2 CD4

+ T cells in functional muscle
regeneration.
Muscle structure correlatedwith the differences

in functional capacity. Histologically, at 6 weeks
after injury, the quadriceps muscle treated with
the C-ECM scaffold appeared similar to that of
healthy controls, with minimal scaffold visible
and repair tissue fully integrated within the sur-
rounding musculature. A large region of fibrous
tissue with active inflammation was present in
muscles treated with the collagen scaffold (Fig.
4C and fig. S11).Rag1−/−mice displayed increased
adipose deposition, fibrosis, scaffold persistence,
and smaller-diameter muscle fibers than their
WT counterparts. At 3 weeks after injury, central-
ly nucleated muscle fibers, which are indicative of
active regeneration or recovery from injury, were
presentwithin the biomaterial scaffold and around
the defect site (Fig. 4D and fig. S12). WT mice
produced muscle with larger, more rounded
fibers, whereas Rag1−/− mice muscles contained
smaller, irregularly shaped fibers, indicating a
defect in muscle regeneration. In addition, the
pathologicRag1−/− histomorphologywas recapit-
ulated inCd4−/−mice, confirming the role of CD4+

T cells in fibro-adipogenic lineage commitment
(Fig. 4D). Increased gene expression of Adipoq
(adiponectin) confirmed ectopic adipogenesis in
Rag1−/− whole muscle. Similarly, the expression
of Col1a1 (type I collagen) increased in Rag1−/−

micemuscles, highlighting increased fibrosis (Fig.
4E and fig. S13). Although scaffold treatment
reduced fibro- and adipogenesis markers in WT
animals, this benefit was lost in Rag1−/− mice.
We have demonstrated that tissue-derived bio-

material scaffolds enhance the development of a

pro-regenerative immune environment and have
implicated adaptive immune cells, specifically
mTORC2-dependent CD4+ TH2 T cells, in the
process of functional tissue restoration (fig. S14).
Just as cancer research hasmade great strides in
T cell therapies, these concepts can be translated
to biomaterials design to improve tissue repair and
regeneration (30–33).
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