


molecular-weight band on SDS–polyacrylamide
gel electrophoresis (fig. S1). To assess functional-
ity, we recorded glutamate-activated GluA2-
STZ currents using patch-clamp electrophysiology.
Compared with wild-type GluA2, GluA2-STZ
showed reduced desensitization and slower
rates of deactivation, desensitization, and re-
covery from desensitization (Fig. 1C and fig.
S2), as expected (26–30). Thus, the presence of
the GT linker between GluA2 and STZ in our
GluA2-STZ construct did not significantly af-
fect modulation of GluA2 function by STZ.
Cryo-EMmicrographs of purified GluA2-STZ

bound to antagonist ZK200775 gave initial insight
into the particle details (Fig. 1D), and initial views
of GluA2-STZ from two-dimensional (2D) classes
suggested high data quality, with visible linkers
between the LBD and TMD, clear secondary
structure features in both the ECD and TMD, and
diverse particle orientations (Fig. 1E). However,
atypical for the GluA2 three-layer topology (fig.
S3, A and B), GluA2-STZ showed a four-layer
architecture, where below the TMD layer is a
fourth layer (Fig. 1D) that appears dis-
ordered (Fig. 1E). A closer look at the
GluA2-STZ particles (25) suggested that
the disordered fourth layer under the
TMD is likely composed of unbound STZ
and is a result of the tandem construct
design,whichdefines the protomer ratio
but not interaction stoichiometry.
We identified multiple STZ-bound

states of the GluA2-STZ complex through
additional image processing (fig. S4).
One state resembles the map for GluA2
alone (fig. S3C) and shows no STZ bound
(GluA2-0xSTZ) (Fig. 2A). A second state
shows a single STZ assembled around
GluA2, which we call GluA2-1xSTZ (Fig.
2B). We also identified a third state of
the GluA2-STZ particles, where two
STZ molecules are assembled around
the GluA2 core, termed GluA2-2xSTZ
(Fig. 2C). For all three states, we observed
no preferred particle orientation in the
refinedmaps (fig. S5), withmost particles
contributing to the single-bound STZ
state (fig. S6). A closer look through 2D
slices of the 3D refined cryo-EM den-
sity maps in the TMD and LBD-TMD
linkers highlights the differences in
stoichiometry, where zero (Fig. 2A), one
(Fig. 2B), or two (Fig. 2C) STZ TMDs
and ECDs are visible around the GluA2
core and periphery, respectively. Corre-
spondingly, the disordered fourth layer
(Fig. 1E) in these three stoichiometric
states presumably has four, three, and
two STZ molecules from the tandem
construct that are not bound around
the GluA2 core (25). Based on our den-
sity maps (Fig. 2), we propose that the
preferred stoichiometry of the GluA2-
STZ interaction is one or two STZ
protomers to one tetramer of GluA2.
The existence ofmultiple stoichiometric
states suggests that STZ expression

levels could have a profound effect on AMPAR-
mediated neurotransmission.
To gain further insight into the AMPAR-TARP

interaction, we built a structural model of the
GluA2-1xSTZstate.Guidedby the two-fold symmetry
of the ECD (8–12), we used the corresponding
portion of the GluA2-1xSTZmap refinedwith C2
symmetry to 5.6 Å resolution (fig. S6) (25) to fit
GluA2ATDs andLBDs (8) and to build ATD-LBD
linkers. We further used the 6.4 Åmap obtained
from refinement without symmetry restraints
(fig. S7) to fit the GluA2 TMD region (8) and to
build LBD-TMD linkers (fig. S8). We then took
advantage of amino acid sequence conservation
between TARP family and Claudin family pro-
teins (fig. S9)andbuilt aClaudin-19–basedhomology
model of STZ. This model was fitted into the
GluA2-1xSTZ density (25) (fig. S8B), confirming
the similar overall fold of TARPs and Claudins
(31, 32) (fig. S9). The STZ and GluA2 protomers
from the GluA2-1xSTZ structure were also fitted
into theGluA2-2xSTZmap to generate a structure
of the corresponding complex (Fig. 3, A and B).

The structure of STZ includes a TMD that rep-
resents a bundle of four transmembrane helices,
TM1 to TM4, and an extracellular head domain
that sits atop the TMD (Fig. 3C). The main inter-
action between STZ and AMPAR is mediated by
a substantial interface between transmembrane
helices TM3 and TM4 of STZ and M1 and M4 of
GluA2 (Fig. 3D). STZ TM1 and TM2 have no direct
contact to the AMPAR core and face the lipid
membrane. The STZ head domain is composed
of two extracellular polypeptide segments be-
tween TM1 and TM2 and between TM3 and TM4
(Fig. 3C). Most of the head domain is a b sheet
that includes strands b1 to b4 formed by the N-
terminal portion of the TM1-TM2 segment and b5
formed by the C-terminal portion of the TM3-TM4
segment. The remaining portions of the extracellular
segments, the TM3-b5 loop and the b4-TM2 loop
in particular, are conveniently positioned in close
proximity to the LBD and LBD-TMD linkers to
play a key role in regulation of AMPAR function.
The GluA2-STZ structures indicate that the

TM3-b5 and b4-TM2 loops of STZ can only inter-
act with GluA2 subunits B and D but not
A and C (Fig. 3B). At the level of the
LBD, B and D represent the distal sub-
units (fig. S10A) that play a more impor-
tant role in iGluRgating than theproximal
subunitsA andC (9,33,34). STZmolecules
are thus optimally positioned in the
GluA2-STZ complex to maximally affect
GluA2 gating. Themost likely regions of
GluA2 subunits B and D to interact
with STZ loops TM3-b5 and b4-TM2
are the adjacent S1-M1 linker and the
LBD loop between helix H and the b
stand 10 (Fig. 4A). The S1-M1 linker con-
tains four positively charged residues
(K505, K506, K509, and K511), in addi-
tion to four positively charged residues
in the helix H-b strand 10 loop (R692,
K695, K697, and K699), that form an
electropositive patch on the surface of
GluA2 facing STZ (Fig. 4, B and C). In
contrast, six negatively charged residues
in the b4-TM2 loop of STZ (E84, D85,
D87, E89, D91, and E94) form an elec-
tronegative patch on the surface of the
STZ head domain facing GluA2.
Confirming a key role of the electro-

static interactions in regulationofAMPAR
function by STZ, recentmutagenesis expe-
riments on a similar GluA2-STZ tandem
construct showed that the aspartate sub-
stitution of a KGKmotif, which is highly
conserved in AMPARs and includes K697
andK699 residues in the helixH-b strand
10 loop, almost completely abolished the
effects of STZ onGluA2 receptor function
(29). In addition, the electronegativemo-
tif in the STZ b4-TM2 loop is highly con-
served across type I TARPs (19), including
g2 (STZ), g3, g4, and g8 (fig. S9). Similar to
STZ, g3, g4, and g8 slow AMPAR de-
activation and desensitization kinetics
(19). In contrast, type II TARPs g5 and g7
donot have the conserved electronegative
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Fig. 2. Stoichiometric states of GluA2-STZ. On the left, cryo-EM
density maps of (A) STZ-unbound, (B) single STZ-bound, and (C) dou-
ble STZ-bound states of GluA2-STZ filtered to 8.7 Å, 6.4 Å, and 7.8 Å
resolution, respectively. For each state, 2D slices made parallel to the
membrane through the refined, nonfiltered map are shown on the
right: one through the middle of GluA2 LBD-TMD linker region and
another through the middle of GluA2 TMD. (Details of collection and
refinement are included in fig. S6.)
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motif in the b4-TM2 loop (fig. S9) and likely use
different mechanisms to alter AMPAR gating and
pharmacology (19, 35). Indeed, substitution of the
TM1-TM2 extracellular stretch in STZwith that of
g5 dramatically reduced the effect of STZ on
AMPAR gating and agonist efficacy to nearly the
levels of AMPAR alone (27).

We hypothesize that the overall compression of
AMPARs upon activation (9–12, 36) brings the
negative patch on the STZ surface closer to the
positive patch on the surface of GluA2 (fig. S10B),
thus enhancing their electrostatic attraction. This
additional forcewould account for STZ-stabilization
of the open conformation of AMPARs (37) and

correspondingly make deactivated and desen-
sitized states less favorable.
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