he phenotypic effects of acute poisons found among the rich pharmacopeia of terrestrial and marine life have been documented from antiquity. Isolation and characterization of toxic compounds have made available important chemical reagents for studying complex biochemical circuits (I). Studies of this type have revealed a large number of peptide and small-molecule agents that target voltage-gated sodium ion channels (NaVs), an obligatory class of membrane proteins that are fundamental to cellular excitation and ion gating kinetics is lacking. Toxin-gated sodium ion channels (NaVs). Here we report concise asymmetric syntheses of the natural (−) and non-natural (+) antipodes of batrachotoxin, as well both enantiomers of a C-20 benzoate-modified derivative. Electrophysiological characterization of these molecules against NaVs subtypes establishes the non-natural toxin enantiomer as a reversible antagonist of channel function, markedly different in activity from the (−)-batrachotoxin. Protein mutagenesis experiments implicate a shared binding side for the enantiomers in the inner pore cavity of NaVs. These findings motivate and enable subsequent studies aimed at revealing how small molecules that target the channel inner pore modulate NaV dynamics.

Asymmetric synthesis of batrachotoxin: Enantiomeric toxins show functional divergence against NaV

Matthew M. Logan,* Tatsuya Toma,† Rhiannon Thomas-Tran,‡ J. Du Bois§

The steroidal neurotoxin (−)-batrachotoxin functions as a potent agonist of voltage-gated sodium ion channels (NaVs). Here we report concise asymmetric syntheses of the natural (−) and non-natural (+) antipodes of batrachotoxin, as well both enantiomers of a C-20 benzoate-modified derivative. Electrophysiological characterization of these molecules against NaVs subtypes establishes the non-natural toxin enantiomer as a reversible antagonist of channel function, markedly different in activity from the (−)-batrachotoxin. Protein mutagenesis experiments implicate a shared binding side for the enantiomers in the inner pore cavity of NaVs. These findings motivate and enable subsequent studies aimed at revealing how small molecules that target the channel inner pore modulate NaV dynamics.

SYNTHESIS

Toxic (−)-BTX and non-toxic (+)-BTX are naturally occurring toxins isolated from certain species of Phyllobates tree frogs (genus Phyllobates), which are predators of beetles (genus Choresine) but only in small quantities (e.g., ~1.8 μg of (−)-BTX per beetle). Although semi-(−)- and racemic (−)BTX have been identified in select species of birds (genus Pitohui and fricta) (14) and beetles (genus Choresine) (15), but only in small quantities (e.g., ~1.8 μg of (−)-BTX per beetle). However, semi-(−)- and racemic (−)BTX have been isolated and characterized in the three-dimensional architecture of prokaryotic NaVs (6–9), a molecular understanding of the influence of the site 2 toxins on ion conduction and ion gating kinetics is lacking. Toxin structure-activity studies, in combination with protein mutagenesis experiments, can address questions related to the dynamical nature of channel function and may guide the rational design of small-molecule modulators of NaV activity (10).

The potency of (−)BTX (10), its storied history as the archetypal small-molecule site 2 probe (4), and its unparalleled effects on channel gating render it an optimal "lead" compound for such investigations.

(−)-BTX binding to NaVs alters every aspect of channel function, resulting in a hyperpolarized shift in the voltage dependence of activation, inhibition of both fast and slow inactivation, a decrease in single-channel conductance, and reduction of ion selectivity (3, 4). The utility of this natural product as a NaV activator has led to a substantial depletion in the world supply, which once exceeded 1 g but was less than 170 mg as of 2009 (11, 12). Since the toxin was first isolated in 1963 by Mäkärä and Willkop from poisonous frogs collected in the northern rain forest of Colombia (13), Phyllobates has been placed on the endangered species list, and thus collection of natural (−)-BTX from this source is restricted. (−)-BTX has also been identified in select species of birds (genus Pitohui and fricta) (14) and beetles (genus Choresine) (15), but only in small quantities (e.g., ~1.8 μg of (−)-BTX per beetle). Although semi-(−) and racemic (−)BTX have been identified in select species of birds (genus Pitohui and fricta) (14) and beetles (genus Choresine) (15), but only in small quantities (e.g., ~1.8 μg of (−)-BTX per beetle). Reports of semi-(−) and racemic (−)BTX have been isolated and characterized in the three-dimensional architecture of prokaryotic NaVs (6–9), a molecular understanding of the influence of the site 2 toxins on ion conduction and ion gating kinetics is lacking. Toxin structure-activity studies, in combination with protein mutagenesis experiments, can address questions related to the dynamical nature of channel function and may guide the rational design of small-molecule modulators of NaV activity (10).
agonist activity. Unraveling BTX-A exposes a steroid-like frame 1, the assembly of which is con- founded by two angular groups at C/D-ring junction, the C-11 exo-methylene and the C-8/C-9 alkene. To maximize convergence in our synthetic plan, we conceived a disconnection strategy for 1 across the C ring. This idea would reduce the problem of constructing 1 into two fragments, each expressing the A/B-ring system (3, 20) and a second comprising the D-ring cyclopentane (4, 2f).

The successful execution of this scheme could produce the desired toxin through a sequence of linear steps totaling no more than 20 to 25.

Our synthesis of (−)-BTX commenced with the coupling of methyleneoctalopentanone 4 (2f) (fig. SIA) and vinyl bromide 3, accessed from (S)-(+)-Hajos-Parrish ketone through a modified sequence of steps originally outlined by Parsons and co-workers (20) (fig. SIB). Conjoining fragments 3 and 4 to generate the linked A/B/D-tricycle 5 presented the first in a series of process development challenges. An initial attempt to effect this transformation involved Li-Br exchange of 3 with n-BuLi (Bu, butyl) and sequential addition of enone 4. Although 5 was delivered under these conditions, product yields never exceeded 30%. Deuterium quenching experiments with D2O validated our hypothesis that 6-deprotonation of 4 was competitive with the desired ketone addition pathway. Transmetalation reactions of the vinyl-lithium species with ZnCl2, ZnBr2, MgBr2·OEt2 (Et, ethyl), CeCl3·Yb(OTf)3 (Yb, trithiumosulphonate), CeCl3·2LiCl, and LaCl3·2LiCl were examined, but none of these measures proved effective (22, 23). The addition of one equivalent of anhydrous LiBr to the reaction media of 3 improved the coupling efficiency by >20% (24). Following this lead, an optimized protocol using 2.1 equivalents of LiBr in situ, reproducibly afforded 5 as a single diastereomer in 65% yield on a multi-gram scale. The ease of synthesis of this material and its desilylated form 6 enabled subsequent efforts to identify conditions for tandem annulation of the C ring and installation of the quaternary C-13 center.

An evaluation of available methods for ring closure of 1,6-enynes led us to consider radical-initiated processes (25). Under such conditions, an incipient C-13 3° radical could be intercepted to forge the angular aminomethylene unit (or a suitable surrogate). Efforts to first examine C-ring formation on 6, however, revealed the potential fallacy of this plan. Using n-Bu3SnH and triethylborane (Et3B) to promote the cyclization event resulted in the generation of two isomers, 7 and 8, in a 1:5 ratio favoring the undesired product (Fig. 2A). Studies by Stork and Beckwith and co-workers have demonstrated that substrate concentration and reaction temperature can influence the mode of cyclization (i.e., 5-exo-trig versus 6-endo-trig) in radical-mediated enyne reactions (26, 27). At elevated temperature (130°C) and with fivefold dilution of 6, a reversal in selectivity was observed, affording a slight excess of the desired tetracycle (1.3:1 ratio of 7 to 8; Fig. 2A). The combined product yield of this transformation exceeded 90%, thus encouraging further exploration of this chemistry, despite the modest selectivity results.

Repeated attempts to capture the intermediate C-13 radical with oxime and hydrazine derivatives generated from formaldehyde failed to deliver the expected aminomethylation product (28). Forced to consider alternative solutions, we recognized that a modified silyl ether group appended from the neighboring C-H alcohol would be aptly positioned to intercept the 3° radical (29). Based on available precedent, an allylstannane group should serve future efforts (Fig. 2, A and B). Carbostannylation of the alkyne group of the resulting organostannane moiety (Fig. 2, A and B) was the sole product, a result confirmed by NMR and x-ray crystallography. Formation of allylstannane 6 can be rationalized through a mechanism involving 1,4-H-atom transfer of an intermediate vinyl radical (32) (Fig. 2B), a proposal supported by a deuteron labeling experiment (fig. S5). Although this result was unplanned, the efficiency and selectivity of the cyclization reaction compelled our decision to advance this material. Looking forward, the versatility of the allylstannane group should serve future efforts to prepare C ring-modified BTXs.

The availability of 6 in nine steps from the Hajos-Parrish ketone enabled the production of C-14 alcohol in 6 (30, Fig. 2A). Treatment of the resulting silyl ether 9 with n-Bu3SnH and Et3B at 150°C resulted in a cyclization cascade to give pentacycle 10 as the exclusive product (31). Within the limits of proton nuclear magnetic resonance (1H NMR) detection, none of the corresponding five-membered C-ring isomer was generated in this process. Our preliminary efforts to understand the role of C-14 substituent groups on reaction selectivity suggest that silyl protection of the alcohol (along with the elevated reaction temperatures) favors 6-endo-trig ring closure. Although additional studies are warranted to appreciate these structure-selectivity data, our enyne cyclization cascade offers a convergent approach for synthesizing substituted steroid scaffolds and should facilitate access to a wide range of such compounds.

Close inspection of the radical cyclization products derived from either 6 or 9 revealed an unexpected outcome pertaining to the structure of the resulting organostannane moiety (Fig. 2, A and B). Carbostannylation of the alkyne group should afford a vinyl-tin product, as noted in the reaction of 6. Unexpectedly, when 9 was subjected to the reaction conditions, allylstannane 10 was the sole product, a result confirmed by both NMR and x-ray crystallography. Formation of allylstannane 10 can be rationalized through a mechanism involving 1,4-H-atom transfer of an intermediate vinyl radical (32) (Fig. 2B), a proposal supported by a deuteron labeling experiment (fig. S5). Although this result was unplanned, the efficiency and selectivity of the cyclization reaction compelled our decision to advance this material. Looking forward, the versatility of the allylstannane group should serve future efforts to prepare C ring–modified BTXs.

The availability of 10 in nine steps from the Hajos-Parrish ketone enabled the production of
substantial quantities of material to complete the target synthesis. Excision of the bridging silyl ether in 10 was accomplished with excess n-Bu3NF, revealing a diol intermediate that was subsequently advanced to 11 through 2-idoxybenzoic acid-mediated alcohol oxidation and chemoselective vinylsilane cleavage (57%; Fig. 2B). Conversion of aldehyde 11 to chloroaacetamide 12 was performed by following a three-step, single-flask sequence (16, 33). From 12, efficient closure of the homo- morpholinamide ring with NaOEt (92%) (17) provided a versatile intermediate for modification of both C- and D-ring units. The latter could be achieved through the D-ring enol triflate, prepared using KN(SiMe3)2 and PhNTf2.

Introduction of the C-11z alcohol from the C-ring allylstannane 13 presented one of the more difficult challenges in our approach to BTX (Fig. 2B). Although protodestannylation of 13 to generate the corresponding C-11 exo-methylenecyclohexane had limited success (34), all subsequent attempts to oxidize this compound to ketone 15 (i.e., O2, OsO4, and RuO4) failed to give product. Inspired by a report from Kim and Fuchs, we attempted to convert 13 to the corresponding allyl chloride by using ClCuC (35). Fortuitously, conducting this reaction in dioxane under acidic conditions delivered enal 14 in 85% yield with only a minor amount of the chlorinated product (~10%). Although the mechanistic details of this transformation remain unclear, we are aware of only one other documented example of such an oxidation reaction, which uses a vanadium catalyst and O2 (36). Enal 14 is suitably disposed for conversion to C-11 ketone 15 by following a series of functional group interconversion steps highlighted by a Curtius rearrangement (37). The absence of a viable chromophore on batrachotoxinin A (BTX-A) makes purification of this material difficult; accordingly, in the sequence leading to 15, the C-3 methoxy acetel was exchanged with p-methoxyphenethyl alcohol.

Completion of the carbon skeleton of (-)BTX was accomplished through a palladium-catalyzed cross-coupling of tributyl(1-ethoxyvinyl)tin to vinyl triflate 15 (Fig. 3A) (38). In situ hydrolysis of the incipient ene ether with 1 M oxalic acid supplied enone 16 (77%). Following an extensive screen of reducing agents, successful stereoselective global reduction of enone 16 was accomplished in 33% yield by treatment with freshly prepared AlH3 (39). We hypothesize that the Lewis-basic lactam (or a reduced form) acts as a pivotal stereocontrolling element, as treatment of enone 15 with alternative hydride reducing agents [e.g., AlH3•NMMe2Et, NaBH4, NH3•BH3, (S)-Me-CBS-oxazaborolidine/BH3, or t-selectride] delivered the undesired C-11β alcohol exclusively. The use of AlH3 also favored generation of the correct C-20 allylic alcohol epimer; a stereochemical outcome that can be rationalized through a model invoking chelation control (38). Deprotection of the product from AlH3 reduction under acidic conditions afforded (-)-BTX-A in 83% yield (17). Finally, by employing a modification of Tokuyama, Daly, and Witkop’s (-)-BTX-A acylation protocol with the mixed anhydride prepared from ethyl chloroformate and 2,4-dimethyl-pyrrole-3-carboxylic acid (10), the synthesis of 2 mg of (-)-BTX-A was completed (78%, 0.25% overall yield; 4 steps from (S)-Hajos-Parish ketone). The product was identical in all respects [as assessed by high-resolution mass spectrometry, thin-layer chromatography, and high-performance liquid chromatography (HPLC) coinjection] with a sample of the natural material and with previously recorded spectroscopic data (40, 41). Our synthetic plan also enabled milligram-scale preparation of the unnatural toxin antipode, (+)-BTX, the known benzene ester of (-)-BTX-A (BTX-B; Fig. 3B) (42, 43), and the enantiomer of this compound (ent-BTX-B).

Electrophysiological characterization of synthetic (-)-BTX and BTX-B against rat NaV1.4 (rNaV1.4) confirmed that the latter also functions as an agonist and is similar in potency to the natural product (Fig. S6 and Table S12). Previous reports and our own studies indicate that the ester group of BTX-B

Fig. 2. Enyne radical cyclization to furnish the steroidal core of BTX. Reagents, conditions, and product yields for steps a to p are as follows: (A) a, t-BuLi, THF, −90°C, then 4 (see Fig. 1) (65%); b, K3CO3, MeOH (94%); c, Et3B, air, n-Bu3SnH. (B) d, Me2SiCl=CSiEt2Cl, imidazole, CH2Cl2 (93%); e, O2, n-Bu3SnH, Et3B, Ph2O, 150°C (75%); f, n-Bu3NF, THF, 60°C (94%); g, 2-iodoxybenzoic acid, t-BuOH, 65°C, then OsO4 (7 mol %), NaO4, pyridine, H2O (57%); h, MeNH2, CH2Cl2, Na(O2CCF2)2, H, CH2Cl2, −78°C, then ClCH2COCl, 2,6-lutidine, −78 to 0°C (52%); i, NaOEt, EtOH, 11 THF/C6H6 (92%); j, KN(SiMe3)2, PhNTf2, THF, −78 to 0°C (94%); k, CuCl2, O2, 1,4-dioxane, 73°C (85%); l, NaClO2, NaH2PO4, dimethyl sulfoxide/H2O; m, SOCl2, pyridine, CH2Cl2; n, NaH2, acetone/H2O; o, aqueous AcOH, 1,4-dioxane, 90°C (57% over four steps); p, p-TsOH, 4-Å molecular sieves, p-methoxyphenethyl alcohol (PMBC3HO), C6H6 (89%); THF, tetrahydrofuran; Ph, phenyl; Tl, trifluromethanesulfonylate; Ts, p-toluensulfonate; Ac, acetate.
is more stable than the oxidatively sensitive acylpyrrole of BTX; thus, additional experiments were performed with the former compound (42, 43).

Synthetic BTX-B was tested against a subset of representative NaV isoforms including rNaV1.4, human NaV1.5, and human NaV1.7. Application of 10 μM BTX-B to Chinese hamster ovary cells expressing a single NaV subtype resulted in sustained sodium current in all cases (Fig. 4A and figs. S7 and S8). Use-dependent agonism of NaV isoforms by BTX-B prevented steady-state inactivation of >80% of the sodium channel population (Fig. 4A and fig. S8). BTX-B also induced a characteristic hyperpolarizing shift (−44.9 to −51.5 mV) in the half-maximal voltage ($V_{0.5}$) of activation of wild-type NaV isoforms (Fig. 4B and table S13). The similarity of these data is consistent with the high protein sequence conservation between NaV subtypes in the inner pore–lining S6 helices that form the putative toxin binding site (fig. S9).

Following earlier work from our laboratory (19) and others (44, 45), we questioned whether an enantiomer of BTX would bind with high affinity to NaV with analogous functional effects. Such a question can only be answered with the availability of a de novo synthesis of the toxin. Accordingly, electrophysiological recordings with ent-BTX-B were performed against rNaV1.4. These data revealed ent-BTX-B to be a use- and state-dependent channel antagonist, with a measured half-maximal inhibitory concentration of 5.3 ± 0.6 μM [Fig. 4C and fig. S10; (+)-BTX also displays antagonistic activity (fig. S11)]. The concentration for half-maximal inhibition of NaV by ent-BTX-B is similar in magnitude to the half-maximal effective concentration for BTX-B agonism (1.0 ± 0.1 μM; fig. S10) measured under identical conditions. Notably, unlike the natural antipode, ent-BTX-B binding caused only a minimal shift in the $V_{0.5}$ of activation and the $V_{0.5}$ of steady-state inactivation (table S14). In
addition, channel block was fully reversible by this inhibitor.

To determine whether BTX-B and ent-BTX-B share an overlapping binding site within the inner pore region of NaV1.4, ent-BTX-B was tested against five rNaV1.4 single-point mutants that have been shown previously to destabilize BTX binding (Fig. 4, E and F, and Fig. S12) (39). Mutation of N434 (40), L2280 (47), F7579 (49), and N5854 (49) to lysine resulted in a ~3- to 30-fold decrease in current block by 5 μM ent-BTX-B. Against F1236K (49), however, ent-BTX-B retained significant activity (35% ± 2.1% current inhibition). The evident difference between ent-BTX-B and BTX-B indicates an overlapping, but nonidentical, binding region within the inner pore cavity. It would seem that the open channel is sufficiently large to accommodate lipophilic tertiary amine ligands (29, 45, 50). Subtle alterations in the binding pose of these ligands appear to dramatically alter the functional response of the protein. Future investigations will be directed at delineating the precise channel-toxin interactions that distinguish activation from inhibition by BTX derivatives and related lipophilic toxins.

REFERENCES AND NOTES

GEOPHYSICS

Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan

A. Lin,1 T. Satsukawa,1 M. Wang,1 Z. Mohammadi Asl,1 R. Fueta,1 F. Nakajima2

Field investigations and seismic data show that the 16 April 2016 moment magnitude (Mw) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest–striking Hinagutagawa strike-slip fault zone and newly identified features on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupture terminating in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismicism of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano.

Large earthquakes and active volcanoes are closely related natural phenomena resulting from plate tectonic processes (1–3). Large earthquakes often accompany or precede volcanic eruptions (4–5). Seismic analyses and geological observations reveal that the distribution and segmentation of active faults are mainly controlled by the presence of magma bodies in volcanic regions (6) and that fault segment boundaries play important roles in a number of aspects of earthquake behavior, including rupture initiation and termination (7). Fault segment boundaries generally are associated with a buildup of heterogeneous fault stress (8) and large changes in earthquake-induced surface offset (9). In volcanic regions, a magma chamber may affect seismicity and the rupture process of an earthquake through the presence of a high-temperature area (10), a heterogeneous fault plane on a crater wall (11), and/or rectified diffusion (12). However, because of a lack of geological data, it is unknown whether a volcano can affect coseismic fault rupture processes and mechanisms. The 16 April 2016 Kumamoto earthquake of moment magnitude

RESEARCH REPORTS

SCIENCE sciencemag.org

18 NOVEMBER 2016 • VOL 354 ISSUE 6314 869
Asymmetric synthesis of batrachotoxin: Enantiomeric toxins show functional divergence against Na v
Matthew M. Logan, Tatsuya Toma, Rhiannon Thomas-Tran and J. Du Bois

Pluses and minuses of BTX behavior
Batrachotoxin is a potent neurotoxin produced by the endangered Colombian poison dart frog and is an agonist of voltage-gated sodium ion channels (NaVs). Logan et al. developed a chemical synthesis of this molecule, denoted (−)-BTX, by taking advantage of a tin hydride–mediated radical cyclization to stitch together the polycyclic framework. Using an analogous route, they also prepared the non-natural mirror image, (+)-BTX. Conversely to the natural product, (+)-BTX antagonized NaVs.

Science, this issue p. 865