








signaling pathways: a MyD88-dependent pro-
inflammatory pathway, mediated at the transcrip-
tional level by NF-kB, and a TRIF-dependent
antiviral pathway, mediated at the transcrip-
tional level by IRF3 and IRF7 (22). The GO and
transcription factor binding site enrichment anal-
yses for category I and category II genes suggest
that low- and high-status females use different
pathways in response to immune challenges. Spe-
cifically, low-status females show enhanced activa-
tion of the MyD88-dependent pathway, whereas
high-status individuals are shifted toward the
TRIF-dependent antiviral response (Fig. 4A). Rank-
responsive genes induced by LPS via theMyD88-
dependent pathway [on the basis of comparisons
between wild-type and knockout mice (23)] are
almost exclusively category I genes, whereas TRIF-
dependent genes are slightly enriched andMyD88-
dependent genes are significantly underrepresented
in category II (Fig. 4, B and C). As a result, median
gene expression levels across all rank-responsive
MyD88-dependent genes are predicted by domi-
nance rank (Pearson’s r = –0.80, P = 4.6 × 10−10)
(Fig. 4D), supporting status-related differences
in the TLR4-mediated immune response.
Together, our findings show that social sub-

ordination alone is sufficient to alter immune

function even in the absence of variation in re-
source access, health care, or health risk behav-
iors. Asmacaques are close evolutionary relatives
of humans, these results likely point to mech-
anisms that also underlie social status effects
in humans, where experimental studies are not
possible (24). Our results also demonstrate that
social status influences the immune system at
multiple scales, ranging from coarse leukocyte
compositional patterns, to changes in cell type–
specific gene expression patterns, to altered usage
of specific signaling pathways in response to an
immune challenge that models bacterial infec-
tion. In particular, we provide genome-wide exper-
imental evidence for the idea that social hierarchies
polarize the immune response toward a pro-
inflammatory, antibacterial phenotype in low-
status individuals and an antiviral phenotype
in high-status individuals (8). This distinction
raises questions about the disease conditions and
potential selection pressures associatedwith var-
iation in social status, including whether status
predicts investment in more- or less-costly forms
of immune defense (25). Our findings also lay the
groundwork for further investigation of social
status effects on other aspects of immune func-
tion, such as viral defense and adaptive immunity.
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Fig. 4. Dominance rank polarizes TLR4 responses to LPS stimulation. (A) Key players in the MyD88-
dependent and TRIF-dependent response to LPS-induced TLR4 signaling. Rank-responsive genes in
these pathways are shown in blue (category I genes) and purple (category II genes). (B) Rank-responsive
genes that are up-regulated upon stimulation via the MyD88 pathway (“MyD88-induced”) are almost uni-
versally (89.3%) more highly expressed in low-status females in the LPS+ condition, whereas TRIF-induced,
rank-responsive genes are split (Mann-Whitney test for the difference between MyD88-induced and TRIF-
induced genes: P = 8.31 × 10−7). (C) MyD88-induced genes are overrepresented among category I genes
[FET log2(OR) = 1.95, P = 1.6 × 10−15] but significantly underrepresented in category II [log2(OR) = –2.14,
P = 4.1 × 10−4].TRIF-induced genes are significantly overrepresented in category II [log2(OR) = 0.89, P =
0.04]. (D) Median gene expression levels across all MyD88- and TRIF-induced genes for each female, by
female dominance rank.
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