A microtubule-organizing center directing intracellular transport in the early mouse embryo

J. Zenker, 1 M. D. White, 1 R. M. Templin, 2 R. G. Parton, 2 O. Thorn-Seshold, 3 S. Bissiere, 3 N. Plachta 1, 4 *+

The centrosome is the primary microtubule-organizing center (MTOC) of most animal cells; however, this organelle is absent during early mammalian development. Therefore, the mechanism by which the mammalian embryo organizes its microtubules (MTs) is unclear. We visualize MT bridges connecting pairs of cells and show that the cytokinetic bridge does not undergo stereotypical abscission after cell division. Instead, it serves as scaffold for the accumulation of the MT minus-end-stabilizing protein CAMSAP3 throughout interphase, thereby transforming this structure into a noncentrosomal MTOC. Transport of the cell adhesion molecule E-cadherin to the membrane is coordinated by this MTOC and is required to form the pluripotent inner mass. Our study reveals a noncentrosomal form of MT organization that directs intracellular transport and is essential for mammalian development.

Microtubules (MTs) establish a wide range of spatial configurations critical for various cellular functions including cell division, differentiation, and morphogenesis. Outgrowth of MTs by nucleation is initiated at microtubule-organizing centers (MTOCs), which are sites that stabilize or anchor MT minus ends. In most animal cells, the centrosome serves as the main MTOC. However, preimplantation embryos develop until the mid-blastocyst stage (64 cells) before assembling centrosomes. Therefore, it remains unclear how MTs are spatially organized during early mammalian development.

To reveal MT organization during early development, we imaged live mouse embryos expressing fluorescently labeled MT-associated protein MAP2c. Our movies demonstrate the persistence of MT bridges connecting pairs of cells, from the two-cell stage to the blastocyst stage (Fig. 1, A and C; and movies S1 to S3). Bridge-like structures were previously observed using tubulin staining in fixed pre-implantation human and mouse embryos, yet their functions remain unknown.

During cell division in most cell types, a stereotypical cytokinetic bridge forms between the sister cells, and this bridge is abscised shortly after cytokinesis. However, in the early embryo, the bridge connects each sister cell pair throughout most of interphase (Fig. 1, fig. S1, and movies S1 to S3). This interphase bridge maintains MT plus ends labeled by the end-binding proteins EB1 and EB3, as well as stem-body markers including aurora B (Fig. S2). Yet in contrast to the MTs of a stereotypical cytokinetic bridge that align predominantly from the cell nucleus to the stembody, the MTs of the interphase bridge project more broadly throughout the cell (Fig. S3A). Moreover, when a cell enters mitosis, the depolymerization of its MT network is propagated along the interphase bridge toward the connected sister cell, which then enters mitosis (fig. S3, B to D, and movie S4). Because ablation of MTOCs in other systems produced comparable widespread MT depolymerization (13–16), we hypothesized that the interphase bridge could function as an MTOC in the mouse embryo. Tracking the MT plus-end marker EB3-dTomato to visualize MT outgrowth (17) shows that, at the cytokinetic bridge, 98.6 ± 1.4% of MT plus ends project in a cell-to-bridge direction (Fig. 2D and movie S5). By contrast, at the interphase bridge, 77.7 ± 2.5% of EB3-dTomato tracks follow the opposite trajectory, demonstrating extensive MT outgrowth from the interphase bridge into the cell (Fig. 2E and movie S5).

Nocodazole treatment causes extensive loss of MTs. However, the interphase bridges are spared (Fig. S5A), similar to the high resistance of centrosomes to nocodazole in other cell types (18). Furthermore, following nocodazole washout, these spared bridges resume MT outgrowth, and the cells rebuild a MT network (Fig. S5, A and B, and movie S6). Similarly, after cold treatment, MT recovery is prominent near the interphase bridge (Fig. S5C). MT outgrowth from the interphase bridge can also be optically inhibited with the use of 405-nm light, in live embryos cultured with nocodazole.

---

1Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. 2Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia. 3Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany. 4Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

*Corresponding author. Email: plachta@imcb.a-star.edu.sg
Fig. 2. The interphase bridge is an MTOC. (A) Live imaging shows MT depolymerization along the interphase bridge after laser ablation (Abl). (B) Live embryo demonstrates overall MT loss within the ablated cell and its sister, but not in the neighbor cell, post-ablation. (C) Reduction in GFP-MAP2c intensity after ablation. n, number of embryos; AU, arbitrary units. Error bars represent SEM. (D and E) Tracking MT plus ends labeled by EB3-dTomato at cytokinetic and interphase bridges. Images show bridges where tracking was performed. Arrowheads show MT plus ends moving within the confocal plane. Graphs show all tracks colored according to their endpoint angle relative to the longitudinal bridge axis. Asterisks mark the middle of bridges. Vertical dashed lines provide landmarks for comparison. The interphase bridge shows more MT plus ends projecting in a bridge-to-cell direction. Scale bars, 10 μm in images of entire embryos; 2 μm in all other images.

Fig. 3. CAMSAP3 enables the interphase bridge to function as a noncentrosomal MTOC. (A) Live imaging demonstrates GFP-CAMSAP3 accumulation at the interphase bridge (arrowheads), but not at the cytokinetic bridge. (B) Live embryo and zoomed-in view of GFP-CAMSAP3 accumulation at the interphase bridge. (C) GFP-CAMSAP3 overlaps with EB3-dTomato. (D) CAMSAP3 knockdown embryos form smaller interphase bridges and display reduced GFP-MAP2c and EB3-dTomato intensity. Asterisks indicate the middle of the bridges. siRNA, small interfering RNA. (E) CAMSAP3 down-regulation reduces EB3-dTomato–labeled MT plus ends tracking toward the cell. Images show interphase bridges where tracking was performed. Right panels reveal a lack of MT plus ends tracking toward the bridge. Scale bars, 10 μm in images of entire embryos; 2 μm in all other images.
Fig. 4. The interphase bridge directs intracellular transport of E-cadherin. (A) Three-dimensional serial blockface scanning electron microscopy (3D-SEM) sections reveal vesicular structures near the interphase bridge. (B) Live embryo shows E-cad–GFP–labeled puncta (arrowheads) along theMTs of the interphase bridge. (C) E-cad–GFP is enriched at the interphase bridge of inner cells (arrowheads), compared with outer cells. Arrows show E-cad–GFP–labeled cell membranes. (D) Graphs show E-cad–GFP transport in inner and outer cells. Asterisks indicate the middle of the bridges. (E and F) GFP-CAMSAP3 is enriched in inner cells relative to outer cells. (G and H) Manipulation of the interphase bridge affects E-cad transport and localization. NS, not significant. (I) Laser ablation (Abl) of an interphase bridge eliminates transport of E-cad–mRuby puncta (arrowheads). (J) A cell with an ablated interphase bridge and its sister fail to undergo internalization (arrowheads). (K) Interphase bridge ablation disrupts inner-cell numbers. (L) CAMSAP3 down-regulation in half of the cells of the embryo disrupts E-cad–mRuby transport (white arrowheads) at the interphase bridge and inner-cell number. Knockdown embryos have smaller bridges (yellow arrowhead). (M) CAMSAP3 knockdown embryos have reduced inner-cell numbers. Asterisks indicate the middle of the bridge in (B), (C), (I), and (L). Scale bars, 1 μm for 3D-SEM; 10 μm in images of entire embryos; 2 μm in all other images.
E-cad–mRuby transport and membrane localization (Fig. S9, M to P). Therefore, E-cad is transported in a MT minus-end-directed and Rab11a-dependent manner, along the MTs of the interphase bridge.

As E-cad is essential for inner-cell communication (25, 26), we investigated differences in transport by the interphase bridge of inner cells and outer cells. Both E-cad and Rab11a are enriched at the interphase bridge of inner cells and display increased cell-to-bridge transport, relative to outer cells (Fig. 4, C and D, and fig. S10, A to D). These asymmetries in transport coincide with asymmetries in GFP-CAMSAP3 and RFP-MAP2c levels, and in bridge volume, between inner and outer cells (Fig. 4, E and F, and fig. S10, E and F). Furthermore, GFP-CAMSAP3 increase occurs concomitantly with the expansion of the basolateral surface area of internalizing cells (fig. S10, G to I).

Laser ablations targeting individual interphase bridges eliminate their transport of E-cad–mRuby and GFP-Rab11a puncta toward the cell membrane (Fig. 4, G and I, and fig. S11, A, E, and G). Furthermore, laser ablation reduces E-cad–mRuby intensity at basolateral membranes of the targeted cell, its sister, and the junctions shared with neighboring cells (Fig. 4H and fig. S11, B and C). Cell tracking shows that cells with ablated bridges fail to contribute to the inner mass (Fig. 4, J and K, and fig. S11D). In line with this, CAMSAP3 knockdown cells display reduced E-cad–mRuby and GFP-Rab11a transport at their interphase bridges and reduced E-cad–mRuby localization at the basolateral membrane (Fig. 4, G, H, and I, and fig. S11, F to H). Consistent with the loss of E-cad at the membrane (25, 26), CAMSAP3 down-regulation also causes defects in cell shape and inner-mass formation (Fig. 4, I and M, and fig. S11, I to L). Together, these results show that E-cad is transported to the basolateral membrane along MTs organized by the interphase MTOC, and this process is essential for early mammalian development (fig. S12).

In summary, we identify a noncentrosomal interphase MTOC directing E-cad transport in the early mouse embryo. Contrary to early views of spatially random MT organization (5, 6), we reveal that the interphase bridge organizes nonmitotic MTs in the embryo (fig. S12). We propose that retention of the cytokinetic bridge after division provides a preexisting scaffold, enabling noncentrosomal MT stabilization and outgrowth. CAMSAP3 is not essential for the initial formation of the MT bridge, yet in its absence, this structure fails to convert into an MTOC, consistent with recent models of noncentrosomal MTOC assembly (1, 7). The persistence of the interphase bridge throughout preimplantation development and its apparent presence in human embryos (7) suggest further functions. By connecting all sister cells, the bridge could provide mechanical coupling between cells and coordinate the spatiotemporal dynamics of cell division and polarization during early development.

REFERENCES AND NOTES


ACKNOWLEDGMENTS

This work was supported by grants from the Deutsche Forschungsgemeinschaft (to J.Z. and O.T.-S.); the Swiss National Foundation and Human Frontier Science Program (to J.Z.); the National Health and Medical Research Council and Australian Research Council Centre of Excellence (to R.G.P.); the Centre for Nanoscience (to O.T.-S.); and A*STAR, the European Molecular Biology Organization, and Howard Hughes Medical Institute–Wellcome Trust (to N.P.). O.T.-S. is an inventor on patent application WO2015166295 submitted by Ludwig-Maximilians-University Munich that covers the structure of PST-1.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/357/6354/925/suppl/DC1

Materials and Methods
Supplementary Text
Figs. S1 to S12
References (31–33)
Movies S1 to S10

7 February 2017; resubmitted 3 May 2017
Accepted 1 August 2017
10.1126/science.aam9335

Downloaded from http://science.sciencemag.org/ on January 7, 2021
A microtubule-organizing center directing intracellular transport in the early mouse embryo

J. Zenker, M. D. White, R. M. Templin, R. G. Parton, O. Thorn-Seshold, S. Bissiere and N. Plachta

Science 357 (6354), 925-928.
DOI: 10.1126/science.aam9335

How microtubules organize in embryos

Cell functions ranging from cell division to morphogenesis rely on microtubules, with microtubule-organizing centers serving as anchoring sites for their outgrowth. Although the centrosome organizes the microtubule cytoskeleton in most animal cells, this organelle is absent in early development. Using live-cell imaging, Zenker et al. found that the cells of the early mouse embryo are connected by stable microtubule bridges to direct the growth of microtubules within them. Microtubules emanating from the bridges help to guide transport of key proteins, including E-cadherin, to the cell membrane to control cell polarization during early development.

Science, this issue p. 925

Use of this article is subject to the Terms of Service