MICROBES WITHIN THE HOST IN HEALTH AND DISEASE

13th Annual Salk/Fondation Ipsen/Science Symposium on Biological Complexity
January 22 - 24, 2019 • Salk Institute for Biological Studies, La Jolla, CA

THE SYDNEY BRENNER NOBEL LECTURE JEFFREY GORDON WASHINGTON UNIVERSITY IN ST. LOUIS

SESSION 1: GUT-BRAIN AXIS
JANELLE AYRES (Chair) SALK INSTITUTE FOR BIOLOGICAL STUDIES
SARKIS MAZMANIAN CALIFORNIA INSTITUTE OF TECHNOLOGY
ROSA KRAMALNICK-BROWN ARIZONA STATE UNIVERSITY
JOHN CRYAN UNIVERSITY COLLEGE CORK, IE

SESSION 2: IMMUNOMETABOLISM
SUSAN PREGGOTT (Chair) UNIVERSITY OF WESTERN AUSTRALIA, AS
ROSALIE MEDZHITOV YALE UNIVERSITY
LUKE D’HEILLY TRINITY COLLEGE DUBLIN, IE
RUTH LEY MAX PLANCK INSTITUTE, GE

SESSION 3: CANCER AND CANCER THERAPIES
LAURENCE ZITVOGEL (Chair) DUSKAN RUDASKY, FR
CINDY SEARS JOHNS HOPKINS MEDICAL INSTITUTE
OMER YILMAZ MASSACHUSETTS INSTITUTE OF TECHNOLOGY
THOMAS GAJEWSKI UNIVERSITY OF CHICAGO

SESSION 4: HOST-PATHOGEN INTERACTIONS
DENISE MONAK (Chair) STANFORD UNIVERSITY
ANDREAS BÄUMER UNIVERSITY OF CALIFORNIA, DAVIS
THAD STAPPENBECK WASHINGTON UNIVERSITY IN ST. LOUIS
HERBERT “SKIP” VIRGIN WASHINGTON UNIVERSITY IN ST. LOUIS

SESSION 5: IMMUNE-MICROBE INTERACTIONS
LORA HOOPER (Chair) UNIVERSITY OF TEXAS SOUTHWESTERN MEDICAL CENTER
GREGORY BARTON UNIVERSITY OF CALIFORNIA, BERKELEY
ANDREW MACPHerson UNIVERSITY OF BERN, SW
YASMIN BELRAID NATIONAL INSTITUTE OF HEALTH, NIAID

SESSION 6: MICROBIAL COMMUNITIES IN HEALTH AND DISEASE
MARTY BLASER (Chair) NEW YORK UNIVERSITY
SUSAN LYNCH UNIVERSITY OF CALIFORNIA, SAN FRANCISCO
DAK LITTMAN NEW YORK UNIVERSITY
MICHAEL FISCHBACH STANFORD UNIVERSITY

ORGANIZING COMMITTEE: JANELLE AYRES • JAMES LEVINE • VALDA WYSON

SCIENTIFIC PROGRAM COMMITTEE: JANELLE AYRES (Chair) • ROB EVANS • MICHAEL KARIN
ROB KNIGHT • MANUELA RAFFAELELU • INDER VERMA (PAST CHAIR) • VALDA WYSON • CAROLINE ASH

ONLINE REGISTRATION and INFORMATION: www.salk.edu/SFIS2019
CONTACT: events@salk.edu
#SFIS2019

ABSTRACT SUBMISSION DEADLINE: December 19, 2018 REGISTRATION DEADLINE: January 4, 2019

Poster design by Jamie Simon, Salk Institute
AAAS Travels

Alaska Aurora Borealis

March 28 - April 3, 2019

Come discover the great beauty of Alaska in winter, and see the greatest light show on earth! Also see Alaskan wildlife in winter near Seward, and then take the train from Talkeetna to Fairbanks, passing lofty 20,310 foot Denali (Mt. McKinley) en route. See the Ice Festival in Fairbanks and learn about the Aurora from Geophysical Institute scientists. Watch a local sled dog team, and see the Aurora Borealis dance across the night sky. $2,995 pp + air

For a detailed brochure, call (800) 252-4910

All prices are per person twin share + air

BETCHART EXPEDITIONS Inc.

17050 Montebello Rd, Cupertino, CA 95014

Email: AAASInfo@betchartexpeditions.com

www.betchartexpeditions.com

DOES YOUR LAB COMBINE COMPUTATIONAL AND EXPERIMENTAL STRATEGIES TO INVESTIGATE SIGNALING NETWORKS?

Science Signaling | AAAS

Find out more about the scope of the journal and submit your research today. ScienceSignaling.org

2019

AAAS MARTIN AND ROSE WACHTEL CANCER RESEARCH AWARD

Recognize the work of an early career scientist who has performed outstanding work in the field of cancer research. Award nominees must have received their Ph.D. or M.D. within the last 10 years. The winner will deliver a public lecture on his or her research, receive a cash award of $25,000, and publish a Focus article in *Science Translational Medicine*.

For more information visit www.aaas.org/aboutaaas/awards/wachtel or e-mail wachtelprize@aaas.org.

Deadline for submission: **February 1, 2019**.

Science Translational Medicine | AAAS
Superresolution, Single-Molecule Fluorescence Microscope

The Nanoimager from Oxford Nanolimaging (ONI) is a desktop-compatible, superresolution, single-molecule fluorescence microscope with localization precision reaching 20 nm. It supports various modes of operation: single-molecule, localization-based superresolution for quantitative cellular imaging; single-particle tracking in live cells; digital confocal microscopy; and structured illuminated microscopy (SIM) as well as single-molecule fluorescence resonance energy transfer (FRET) for measuring molecular interactions in the 2 nm–10 nm range. The Nanoimager is a cost-effective solution that operates on a standard laboratory bench, features whole-body heating for live experiments, and does not require an optical table or darkroom. It is a Class 1 laser product with unrivaled stability. Unlimited licenses to ONI’s NimOS software allow seamless operation and rapid quantitative data analysis with intuitive presentation of results.

Oxford Nanolimaging (ONI)
For info: +44-(0)-1865951820
www.oxfordni.com

Refractive Index Detector

The Differential Refractive Index (DRI) Detector from Testa Analytical Solutions is a next-generation instrument for challenging gel permeation chromatography/size-exclusion chromatography (GPC/SEC) applications. Its high sensitivity makes it the perfect companion for characterization of natural and synthetic polymers as well as protein investigations. The instrument works at the same wavelength as multi-angle light scattering (MALS) and static light scattering (SLS) detectors, enabling determination of both absolute concentration and total mass balance. It operates from room temperature up to 80°C. Designed to operate in both horizontal and vertical orientations, the compact detector has the versatility to fit your available benchspace. While developed for use with GPC/SEC multidetector systems, the DRI Detector also provides unbeatable performance in more classical HPLC applications, such as detection of sugars, and is available optimized for low flow rates down to 300 µL/min.

Testa Analytical Solutions
For info: +49-30-864-24076
www.testa-analytical.com

Column Series for Biotherapeutics

bio2Zen from Phenomenex is a series of liquid chromatography (LC) solutions for bioseparations in pharmaceutical, biopharmaceutical, and academic research. The series encompasses both proven and entirely new media spanning two particle platforms—core-shell and thermally modified fully porous. The initial bio2Zen product line features seven chemistries for UHPLC and HPLC characterization of biotherapeutics, such as monoclonal antibodies, antibody–drug conjugates, and biosimilars. The offering includes specific LC chemistries for analysis of aggregates and total monoclonal antibodies, intact mass and fragments, peptide mapping and quantitation, and glycan mapping. All bio2Zen media, particle sizes, and phases are available in Phenomenex’s new, biocompatible titanium hardware, which minimizes secondary reactions, carryover, and other recovery issues to provide better overall reproducibility than stainless-steel hardware. It also reduces the time typically spent on column priming and does not interfere with protein or peptide integrity.

Phenomenex
For info: 310-212-0555
www.phenomenex.com

Evaporator for Kilo-Scale Preparative Chromatography

Configured with a 5-L 316 stainless-steel evaporation vessel, the Rocket 4D Synergy from Genevac offers productive automated removal of solvent for labs running kilo-scale preparative chromatography equipment. Such labs have traditionally relied upon several rotary evaporators to remove the large volumes of solvent resulting from sample fractions. This time-consuming manual process requires a dedicated operator to top-up dry ice in cold traps, feed the systems with more product, and watch them continually. With the Rocket 4D Synergy, you simply load your sample, select a method, press start, and walk away—the system will do the rest. Compact in size, the instrument allows you to dry or concentrate your samples with complete confidence, as it uses proprietary vacuum technology to suppress solvent bumping and foaming—problems associated with sample loss when using large-scale rotary evaporators.

Genevac
For info: 845-255-5000
www.spascientific.com/rocket4dsynergy

High-Throughput, Label-Free Cell Interaction Platform

LUMICKS has released z-Movi, a platform that enables scientists to effectively screen and sort thousands of immune cells in parallel based on their strength of interaction to specific targets, such as tumor cells. Biological and pathological phenomena are heavily dependent on cells interacting with specific targets, including ligands, proteins, or other cells. The z-Movi technology is based on a simple principle: By using noninvasive forces, it is possible to precisely separate immune cells bound to other cells. Depending on how much force is needed to separate the interacting components, cell-cell interaction strength can be measured directly and quantitatively in thousands of cells simultaneously. Cells can be sorted afterward based on interaction strength and isolated for further processing. In this way, researchers can develop personalized therapies that are faster, cheaper, and have fewer side effects than current treatments.

LUMICKS
For info: +31-(0)-20-598-79-84
www.lumicks.com/cell

Hepatic Nonparenchymal Cells

Lonza has added hepatic stellate cells, Kupffer cells, and liver-derived endothelial cells to its liver-cells portfolio. These hepatic nonparenchymal cells give scientists the building blocks to create more physiologically relevant in vitro models, including cocultures and 3D cell cultures, for enhanced liver disease research. Hepatic nonparenchymal cells are involved in normal liver function, including transport, metabolism, and growth—however, they also play important roles in the immune response. These cells can also be involved in the formation of common liver diseases [hepatitis, nonalcoholic steatohepatitis (NASH), and cirrhosis]. By offering all four major liver-cell types (hepatocytes, stellate cells, Kupffer cells, and liver-derived endothelial cells), Lonza offers a one-stop-shop for scientists looking to source human liver cells for their drug discovery research.

Lonza
For info: 800-638-8174
www.lonza.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/about/new-products-section for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
want new technologies?

watch our webinars

Learn about the latest breakthroughs, new technologies, and ground-breaking research in a variety of fields. Our expert speakers explain their quality research to you and answer questions submitted by live viewers.

VIEW NOW! webinar.scien...
How low can you go?

NEBNext® Single Cell/ Low Input Library Prep Kit

With this unique streamlined method, high-quality, full-length transcript sequencing libraries are made directly from single cells, or from as little as 2 pg – 200 ng of total RNA.

• Detect more transcripts, including low-abundance transcripts

• Obtain uniform, full-length transcript coverage, regardless of input amount or sample type

• Save time with a streamlined workflow, minimal handling steps and hands-on time

Visit NEBNext.com to request your sample today.

Sequencing libraries were generated from Jurkat single cells (6 replicates) using the NEBNext Single Cell/Low Input RNA Library Prep Kit, or the SMART-Seq® v4 Ultra II Low Input RNA Kit for Sequencing plus the Nextera® XT DNA Library Prep Kit. Libraries were sequenced on an Illumina® NextSeq™ 500. Each dot represents the number of transcripts identified at the given Transcripts Per Kilobase Million (TPM) range, and each box represents the median, first and third quartiles per replicate and method. Salmon 0.6 was used for read mapping and quantification of all GENCODE v25 transcripts. Increased identification of low abundance transcripts is observed with the NEBNext libraries.

One or more of these products are covered by patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc. For more information, please visit our Intellectual Property page for certain applications.

The use of these products may require you to obtain additional third-party intellectual property rights for certain applications.