Apply for our exciting research Prize!

The Science & PINS Prize is awarded for innovative research that modulates neural activity through physical (electrical, magnetic, optical) stimulation of targeted sites in the nervous system with implications for translational medicine.

$25,000 Grand Prize!
Get published in Science!

The Science & PINS Prize is awarded for innovative research that modulates neural activity through physical (electrical, magnetic, optical) stimulation of targeted sites in the nervous system with implications for translational medicine.

For full details, judging criteria and eligibility requirements, visit:

www.sciencemag.org/prizes/pins

Submission Deadline: March 15, 2019
The World Agriculture Prize seeks Nominations for the 2019 prize to be submitted no later than 17:00 GMT on 30 April 2019, to submit a nomination check terms & conditions for the Prize, and complete the online submission at www.gchera-wap.org

The Call

WORLD AGRICULTURE PRIZE is an international award of the Global Confederation of Higher Education Associations for the Agricultural and Life Sciences (GCHERA, http://www.gchera.com/). The prize aims to promote the global development of the mission of its member institutions in education, research, innovation and outreach in the agricultural and life sciences. It recognizes the distinguished contribution of an individual to this mission. A nominee’s achievements should be demonstrated locally and in the wider geographical region of the institutions in which the nominee has served, but not necessarily globally. The prize is 100,000 USD per person and two recipients awarded, with at least one recipient NOT coming from a country classified as having a developed economy. For the list of those countries with a developed economy see www.gchera-wap.org.

The Prize

Formally proposed by both Prof. Zhai Huqu, the former Vice President of the Chinese Academy of Agricultural Sciences (CAAS) and Prof. Zhou Guanghong, the President of NJAU and Chairman of Education Professional Committee (EPC) of the Chinese Association of Agricultural Science Societies (CAASS) on October 20, 2012 in the occasion of NJAU’s 110th anniversary and was approved at the GCHERA steering committee meeting in Uruguay on Oct. 29, 2012. Generously sponsored by the Education Development Foundation of Nanjing Agricultural University and Da Bei Nong Group, the prizes are awarded annually.

2019 AWARDING CEREMONY

The 2019 GCHERA World Agriculture Prize Awarding Ceremony will be held on Oct. 28, 2019 in Nanjing Agricultural University, Nanjing, China.

For more information, please visit China Coordinating Office for GCHERA World Agriculture Prize: http://wapcn.njau.edu.cn/.

LAUREATES
Eppendorf & Science Prize for Neurobiology

The annual Eppendorf & Science Prize for Neurobiology is an annual international prize which honors young scientists for their outstanding contributions to neurobiological research based on methods of molecular and cell biology. The winner and finalists are selected by a committee of independent scientists, chaired by Science’s Senior Editor, Dr. Peter Stern. If you are 35 years of age or younger and doing great research, now is the time to apply for this prize.

As the Grand Prize Winner, you could be next to receive
> Prize money of US$25,000
> Publication of your work in Science
> Full support to attend the Prize Ceremony held in conjunction with the Annual Meeting of the Society for Neuroscience in the USA
> 10-year AAAS membership and online subscription to Science
> Complimentary products worth US$1,000 from Eppendorf
> An invitation to visit Eppendorf in Hamburg, Germany

It’s easy to apply! Write a 1,000-word essay and tell the world about your work. Learn more at:

www.eppendorf.com/prize
ACCELERATING REGENERATIVE MEDICINE

We’re applying our photographic film innovations to help advance new treatments in the revolutionary field of regenerative medicine. Over the last 80-plus years, we’ve developed advanced technology that controls complex chemical reactions in photographic film that’s a mere 20 microns*1 thick. And today, that technology is being applied to research and the world’s first clinical trial*2 of medical treatments that use high-quality iPS cells. And in the future, we’ll strive to help those suffering from a range of medical conditions, such as those of the eyes, nerves, heart and more. Of course, the challenges are endless, but so are the possibilities. Which is why we’ll never stop accelerating regenerative medicine to help build a stronger, healthier future for all.

*1 Thickness of layers excluding the base.
*2 Fujifilm’s iPS cells are being utilized in the world’s first clinical trial using iPS cells conducted in the UK by the Australian company Cynata.

FUJIFILM and Fujifilm Value from Innovation are trademarks of FUJIFILM Corporation. ©2019 FUJIFILM Corporation. All rights reserved.
NEVER STOP

IMPROVING THE FUTURE

When you’re a company that has spent 85 years striving to move the world forward, you never stop.

After achieving growth in global markets while competing with industry rivals at the height of photographic film’s relevance, never stop.

After turning the threat of the digital revolution into opportunity despite the drastic decline in photographic film demand, never stop.

And moving forward, we’ll never stop contributing to society by developing products and services with a wide range of advanced technologies.

Making smartphone displays react responsively to human touch. Pushing the boundaries of cinematography with 4K and 8K lenses.

Transforming commercial printing with leading-edge inkjet technologies. Creating intelligent workplaces with AI-powered solutions.

Advancing regenerative medicine to meet unmet medical needs. And developing high-quality 3D imaging systems designed to enable doctors to quickly diagnose conditions.

Because when it comes to creating value from innovation, you can rest assured we’ll never stop improving the future, so that together, we can make the world a better place.
Shotgunning the messenger: Single-cell RNA sequencing

New tools are helping scientists sequence and study RNA in unprecedented detail, but each technique has its own strengths and limitations. By Alan Dove

At the turn of the 21st century, plummeting costs and rapidly advancing technology sent many scientists rushing to sequence DNA. The field of genomics blossomed, and organisms of all types had their complete genome sequences published. While sequencing genomes has now become routine, the resulting flood of DNA data hasn’t proved adequate to fully explain many of the phenomena biologists study.

How does a single genome give rise to all the cells in a complex organism? What genes do cancer cells turn on and off to escape the normal checks on their growth? How do lymphocytes respond to pathogens, and how do pathogens escape that response? Answering those questions requires drilling deeper into cellular information flows by sequencing and tracking the changes of the RNA transcripts produced from genomes.

But RNA is harder to study than DNA: It degrades easily and must be reverse-transcribed to accommodate most sequencing techniques. The transcripts of different genes also vary tremendously in abundance. Fortunately, researchers and laboratory suppliers have been steadily improving RNA sequencing tools, empowering the rapidly growing field of transcriptomics. As the technology advances, scientists are increasingly studying RNA changes within single cells, revealing entirely new levels of cellular behavior.

In situ veritas

The story of RNA sequencing is one of steadily increasing resolution. A decade ago, most transcriptomics researchers were isolating RNA in bulk from populations of cells, then using reverse transcriptase followed by standard DNA sequencing techniques to reveal the average transcriptome of each population. Today, the field has largely moved toward single-cell RNA sequencing, using various techniques to separate and tag individual cells, then generating individual transcriptome profiles for each one. That approach has uncovered significant cell-to-cell variation in gene expression within populations that were previously considered homogeneous.

In 2014, researchers at Harvard University’s Wyss Institute in Boston, Massachusetts, took the single-cell approach a step further, sequencing the RNA in cells in situ, to show precisely which cells were transcribing which genes in intact tissue slices and culture plates. The technique entails fixing the cells’ RNA in place, then performing the reverse transcription, amplification, and sequencing steps directly on the fixed sample. Because the sequencing process uses fluorescent markers for the four bases, researchers can photograph each step under a fluorescence microscope, process the images with a computer, and map which RNA sequences occur in each cell (1).

“It’s doing what a lot of the next-generation sequencers out on the market do; but instead of doing it in a flow cell, it’s doing it in the sample itself,” says Richie Kohman, lead senior scientist for the Synthetic Biology Platform at the Wyss Institute. cont.>

Upcoming features

Microscopy: Multiphoton Microscopy—March 22 ■ Molecular Biology: Epitranscripomics—May 17 ■ AI: Neural Networks—September 20
Kohman and his colleagues are now using the technique, called “fluorescent in situ sequencing,” or FISSEQ, in a wide range of projects. In one effort, the team uses genetically engineered viruses to assign unique tags to individual mouse neurons, then performs FISSEQ to detect viral RNAs and map the animal’s neuronal connections. Another project uses gene-editing vectors to generate cellular RNA tags that vary over time as a mouse develops from embryo to adult. Performing FISSEQ on these mice should allow the researchers to trace the lineages of every cell through development.

Though it clearly generates deeper data than sequencing RNA in separated cells, FISSEQ is harder to master. “You have to convert the RNA to DNA, and then you have to get the DNA to [form] a circle, and then you can do the amplification; so all the chemistry required to do that . . . requires a lot of work,” says Kohman. He adds that “the actual sequencing . . . has its own set of challenges, but that also has the advantage of being a somewhat solved problem” due to the growth of high-throughput sequencing technologies.

FISSEQ requires standard fluorescence microscopy equipment, plus sophisticated systems for controlling fluid flows across samples on the microscope stage. The fluid-control systems are available commercially, but their prices may be too steep for labs that don’t specialize in microscopy. The enormous datasets generated by FISSEQ also require elaborate bioinformatics tools to analyze them. To answer those needs, the team at the Wyss Institute has founded ReadCoor, a company that plans to offer FISSEQ products and services to researchers.

Tiny bubbles

Many researchers don’t need the spatial detail of an in-situ technique, especially in fields such as immunology, where the cells are naturally free-floating. For these scientists, multiple vendors offer systems that make single-cell RNA sequencing highly accessible. As these companies compete, they also improve their products continuously.

10X Genomics in Pleasanton, California, for example, was one of the pioneers of user-friendly single-cell RNA sequencing. To use the company’s system, researchers simply load a sample of suspended cells onto a proprietary microfluidic chip. The microfluidic device separates the sample into thousands of tiny droplets, each containing a single cell and a single gel bead. The beads carry unique oligonucleotide “barcodes.” These droplets then undergo standard reverse transcription and sequencing, producing a dataset in which each cell’s complete transcriptome is linked to its individual barcode. Software included with the system lets researchers browse and visualize the data, or they can export it to process it with their own algorithms.

The original 10X system focused on single-cell RNA sequencing, but newer versions add simultaneous DNA sequencing and chromatin analysis. “We added this capability to look at protein expression, where we can barcode antibodies or other proteins that may interact with the cell and read those out at the same time we are looking at [gene] expression and maybe their particular [DNA] clonotype,” says Ben Hindson, chief scientific officer and cofounder of 10X.

In the system’s current iteration, a given experiment can look at two features of a particular cell simultaneously, for example, tracking the expression of a protein on a lymphocyte’s surface and the same cell’s RNA transcriptome. Hindson expects future systems to allow more simultaneous analyses, extracting even more data from each cell. “The natural thing for the field as we look into the future is to get as much information as you can from a single run,” he says.

The speed of the microfluidic system allows investigators to study huge numbers of individual cells. Each chip has eight lanes that can accommodate 10,000 cells each, for a potential throughput of 80,000 cells per run. Indeed, the company has demonstrated the ability to separate, barcode, and sequence the complete transcriptomes of over a million cells in a matter of a few days.

Scientists planning to replicate such an ambitious effort, though, should be prepared for some sticker shock. Hindson explains that while the 10X system itself is priced to fit within academic capital budgets and grant proposals, the cost of sequencing every RNA molecule in every cell scales up rapidly with the size of the experiment.

Fortunately, once the cells are separated and barcoded, researchers can decide what level of sequencing their experiment needs. An immunologist who just wants to classify cells into specific categories might want fewer sequencing reads on more cells, while a molecular biologist intent on new discoveries could generate more thorough sequencing reads on fewer cells.

Playing the odds

Other manufacturers offer single-cell sequencing tools too, and each has its own strategy for sorting and barcoding cells. Experts advise scientists who are just starting to perform RNA sequencing to compare the options carefully, as they come with different strengths and limitations.

In the system’s current iteration, a given experiment can look at two features of a particular cell simultaneously, for example, tracking the expression of a protein on a lymphocyte’s surface and the same cell’s RNA transcriptome. Hindson expects future systems to allow more simultaneous analyses, extracting even more data from each cell. “The natural thing for the field as we look into the future is to get as much information as you can from a single run,” he says.

The speed of the microfluidic system allows investigators to study huge numbers of individual cells. Each chip has eight lanes that can accommodate 10,000 cells each, for a potential throughput of 80,000 cells per run. Indeed, the company has demonstrated the ability to separate, barcode, and sequence the complete transcriptomes of over a million cells in a matter of a few days.

Scientists planning to replicate such an ambitious effort, though, should be prepared for some sticker shock. Hindson explains that while the 10X system itself is priced to fit within academic capital budgets and grant proposals, the cost of sequencing every RNA molecule in every cell scales up rapidly with the size of the experiment.

Fortunately, once the cells are separated and barcoded, researchers can decide what level of sequencing their experiment needs. An immunologist who just wants to classify cells into specific categories might want fewer sequencing reads on more cells, while a molecular biologist intent on new discoveries could generate more thorough sequencing reads on fewer cells.

Playing the odds

Other manufacturers offer single-cell sequencing tools too, and each has its own strategy for sorting and barcoding cells. Experts advise scientists who are just starting to perform RNA sequencing to compare the options carefully, as they come with different strengths and limitations.

In the system’s current iteration, a given experiment can look at two features of a particular cell simultaneously, for example, tracking the expression of a protein on a lymphocyte’s surface and the same cell’s RNA transcriptome. Hindson expects future systems to allow more simultaneous analyses, extracting even more data from each cell. “The natural thing for the field as we look into the future is to get as much information as you can from a single run,” he says.

The speed of the microfluidic system allows investigators to study huge numbers of individual cells. Each chip has eight lanes that can accommodate 10,000 cells each, for a potential throughput of 80,000 cells per run. Indeed, the company has demonstrated the ability to separate, barcode, and sequence the complete transcriptomes of over a million cells in a matter of a few days.

Scientists planning to replicate such an ambitious effort, though, should be prepared for some sticker shock. Hindson explains that while the 10X system itself is priced to fit within academic capital budgets and grant proposals, the cost of sequencing every RNA molecule in every cell scales up rapidly with the size of the experiment.

Fortunately, once the cells are separated and barcoded, researchers can decide what level of sequencing their experiment needs. An immunologist who just wants to classify cells into specific categories might want fewer sequencing reads on more cells, while a molecular biologist intent on new discoveries could generate more thorough sequencing reads on fewer cells.
Like the 10X system, Rhapsody is priced to fit individual lab budgets, with ongoing costs driven primarily by the expense of sequencing.

Go Western, young scientist

Validating single-cell RNA sequencing by checking protein levels is quickly becoming standard practice. “We see a lot of our customers are using 10X instruments . . . or things like that, and now they are basically taking the next step to get protein validation, which is being requested by reviewers and publications,” says Kelly Gardner, a director of marketing at **ProteinSimple** in San Jose, California.

The product Gardner sells, called Milo, satisfies even the pickiest third reviewer by taking protein tracking to its logical extreme: single-cell Western blots. The system consists of a glass slide with a thin polyacrylamide gel on it. Over 6,000 microwells dot the gel. Similar to the BD platform and others, Milo uses a Poisson distribution and controlled loading to distribute the sample. “Many of the wells are empty, and then some of the wells have a single cell,” says Gardner.

Once seeded with cells, the slide goes into the benchtop Milo instrument, which lyses the cells, performs gel electrophoresis on the proteins, then uses a proprietary, ultraviolet-activated compound in the gel to crosslink the proteins in place. That eliminates the inherent protein losses of the transfer step of traditional Western blots, and achieves the sensitivity necessary to probe proteins in single cells. After that, the procedure continues like a standard protein blot, with a primary antibody followed by a fluorescently tagged secondary antibody. A microarray scanner reads the results.

“You end up with an array of single-cell separations; we then have a software package called Scout that can take all those images and detect peaks and quantify the peak area in each single cell,” says Gardner. The current system cannot provide simultaneous RNA sequence information from the same cells, but Gardner says the company is working on that.

In the meantime, processed Milo slides can be stored for up to nine months, allowing researchers to split their samples, perform RNA sequencing and single cell Westerns in parallel, then compare the results. The most common use for the Milo system is for researchers who are already doing single-cell RNA sequencing to discover subsets of transcripts whose expression they want to validate.

Like other equipment makers, ProteinSimple tries to make their products accessible to investigators who need them. User-friendliness is also a major focus, and Gardner says, “We have even nonscientists get started, and they’re running assays on their first try.”

Regardless of their approach, experts in the field agree that single-cell RNA analysis is driving a huge wave of discoveries. “It seems like every week there are new papers coming out in big journals . . . where they have this novel resolution that gives a fresh perspective,” says Hindson.

Reference

Alan Dove is a science writer and editor based in Massachusetts.
Microplate Reader
CLARIOstar Plus is a microplate reader that features Enhanced Dynamic Range (EDR). EDR technology provides researchers with results that can be measured over a large dynamic range (8 decades) with no manual intervention. Additionally, thanks to a rapid, full-plate autofocus, every sample on the plate is automatically detected with the ideal settings without any action required prior to the start of measurement. EDR technology, combined with autofocus, offers the best measurement settings and eliminates the need for multiple readings. The reader can be equipped with up to three dedicated detectors. Users who need the very best performance in far-red fluorescent detection can benefit from a red-sensitive photomultiplier tube. Additionally, an ultraviolet-visible spectrometer delivers ultrafast, full-absorbance spectra.

BMG LABTECH
For info: +49-781-96968-0
www.bmglabtech.com

Simultaneous Protein and RNA Analysis
BD AbSeq is an assay that uses an oligonucleotide-conjugated antibody panel (AbSeq) for protein cell-surface identification that can be added to RNASEq single-cell experiments. This technology provides a more distinct and robust clustering of different cell subsets, enabling researchers to more deeply profile cells in order to further elucidate complex biological systems. When used with BD Rhapsody, the only commercially available single-cell targeted mRNA-seq analysis system, specific mRNA and protein expression can be simultaneously analyzed in thousands of individual cells within a single workflow.

BD Biosciences
For info: 201-847-6800
www.bd.com/en-us

High-Throughput Gene-Expression Analysis Service
AMS Biotechnology (AMSBIO) offers a service for high-throughput gene-expression analysis. Based on the NanoString nCounter platform, the service works with a large array of sample types, including formats such as formalin-fixed paraffin-embedded (FFPE), which have been difficult to analyze with more traditional quantitative PCR. Using AMSBIO’s NanoString service, you can simultaneously analyze expression of up to 800 mRNAs, microRNAs, DNA regions, or proteins. Simply send us your samples, and we will return a detailed gene-expression report in under two weeks. Researchers can choose from one of NanoString’s premade gene panels or design their own custom panel. Sample formats include RNA, cell and tissue lysates, whole blood, FFPE tissue, serum, and plasma.

AMS Biotechnology
For info: 617-945-5033
www.amsbio.com/nanostring-service.aspx

Single-Cell RNA Sequencing and Protein Analysis
Proteona offers ESCAPE RNA Sequencing for clinical proteogenomics. ESCAPE (Enhanced Single Cell Analysis with Protein Expression) is currently being offered globally as a service, and an early-adopter premium kit program is now open for enrollment. It is the first commercial product line to enable researchers to simultaneously measure both gene and protein expression from the same single cells. Both the service and the kit make use of the 10x Genomics platform for making single-cell RNA sequencing libraries, while Proteona provides prepoled and titrated DNA-barcoded antibodies and associated reagents for producing protein-expression sequencing libraries. Proteona also provides an analysis suite and bioinformatics services for helping researchers and clinicians make use of the large datasets produced by the assay.

Proteona
For info: email info@proteona.com
www.proteona.com

Reservoir Troughs for Multichannel Pipetting
Porvair Sciences provides 8- and 12-channel reservoir troughs to help improve multichannel pipetting convenience and productivity in high-throughput laboratories. These troughs help laboratories improve productivity by increasing the speed and precision with which technicians can perform serial dilutions or dispense different reagents using multichannel pipettors. Manufactured from high-quality white polystyrene or clear polyethylene terephthalate, the troughs are autoclavable, and a clear cover is available for both the 8- and 12-channel reservoirs. The design of the new troughs incorporates a v-shaped bottom with a residual volume of 200 µL, reducing dead volume and minimizing waste. For benchtop stability, the troughs are designed to fit snugly on top of Porvair’s 96-Well Multitier Base Plate. The 8-channel trough has a total capacity of 56 mL, with a 1 mL-7 mL capacity per channel. The 12-channel trough has a 36-mL total capacity with a channel capacity of 1 mL-3 mL.

Porvair Sciences
For info: 800-552-3696
www.porvair-sciences.com/multichannel-pipette-reservoirs

Automated Plate Handler
The S-LAB Automated Plate Handler is an entry-level automation solution designed for loading single instruments (plate washers, bulk reagent dispensers, and plate readers). It has been designed for easy installation and out-of-the-box use. With its onboard computer, it can operate as a standalone unit, loading SLAS/ANSI microplates onto a wide variety of benchtop instruments from any manufacturer. Control is simple: S-LAB is controlled via an intuitive software interface on a tablet, laptop, or smartphone. For other instruments, we can offer a bespoke integration service using our Overlord software.

Peak Analysis and Automation
For info: 719-598-3555
DOES YOUR LAB SEEK TO UNDERSTAND MECHANISMS OF DRUG RESISTANCE OR DISEASE PATHOLOGY?

Find out more about the scope of the journal and submit your research today! ScienceSignaling.org
The scientific endeavor has been at the forefront in developing innovations which have improved life on Earth in immeasurable ways. Now, life on this planet is facing new challenges from both nature and the built world, and scientific application is our best tool with which to react. By drawing on our current understanding of the world, and bravely experimenting with forward-thinking visions, the scientific community needs to respond with discoveries and developments to help solve many pressing problems.