Worldwide Search for Talent

City University of Hong Kong is a dynamic, fast-growing university that is pursuing excellence in research and professional education. As a publicly-funded institution, the University is committed to nurturing and developing students’ talents and creating applicable knowledge to support social and economic advancement. The University has nine Colleges/Schools. As part of its pursuit of excellence, the University aims to recruit outstanding scholars from all over the world in various disciplines, including business, creative media, data science, energy and environment, engineering, humanities and social sciences, law, science, veterinary medicine and life sciences.

The University welcomes applications and nominations for all faculty positions of Chair Professor, Professor, Associate Professor and Assistant Professor. The remuneration package will be highly competitive, commensurate with qualifications and experience. Interested parties are invited to submit an online application with current curriculum vitae to apply for current openings at http://go.cityu.hk/hrojobus or by email to “hrojob@cityu.edu.hk”.

City University of Hong Kong is an equal opportunity employer and we are committed to the principle of diversity. Personal data provided by applicants will be used for recruitment and other employment-related purposes.

Worldwide recognition ranking 52nd, and 4th among top 50 universities under age 50 (QS survey 2020); 1st in Engineering/Technology/Computer Sciences in Hong Kong (ARWU survey 2016); and 2nd Business School in Asia-Pacific region (UT Dallas survey 2017).
Seeking to promote mental health

Peking University Sixth Hospital, or Peking University Institute of Mental Health (IMH), is China’s topmost psychiatric hospital. Its director, Lin Lu, an academician of the Chinese Academy of Sciences (CAS), is seeking new therapies for mental and substance use disorders, two major health concerns in China.

Professor Lu and his team have made great efforts to reveal the molecular and circuitry basis of consolidation, storage, destabilization and reconsolidation of pathological emotional memories and proposed a series of novel approaches, including procedures targeting conditioned and unconditioned stimulus induced reconsolidation, to erase memories by making them unstable. Their proposed behavioral and drug treatments have been published in leading peer-reviewed journals, including Science and JAMA Psychiatry.

With passion for science and compassion for patients, Prof. Lu’s team has established a new method to eliminate adverse emotional reactions to the commonly used exposure therapy in the unconscious state of sleep, thus significantly relieving patients’ distress. Also committed to unraveling the relationship between sleep and mental health, Lu’s team has found that sleep disturbances can increase the risk for developing dementia, and sleep disturbances and depression often coexist in the elderly as bi-directionally predicted. Several novel fast-acting antidepressant candidates have been developed to reveal a new glutamatergic mechanism, filling the current treatment gap.

Please feel free to contact Dr. Ping Wu, wuping@bjmu.edu.cn.

Exploring Brain Extracellular Space

Professor Hongbin Han, the director of a key laboratory at Peking University (PKU), is leading a team working on brain Extracellular Space (ECS), which provides an immediate living environment for neural cells and accounts for approximately 20% of the total volume of a living brain. So far he has developed two measuring methods which can provide biophysical parameters of ECS and image the interstitial fluid (ISF) drainage in the whole brain.

By using the self-developed measuring system, Dr. Han and his team have made a series of discoveries, i.e. brain ISF drains in a compartmentalized ECS system and the diffusion in different ECS divisions are disparate. After verifying the nature of the barrier between divisions, Dr. Han has proposed the hypothesis of “compartmentalized local homeostasis”, namely, the brain is protected not only by Blood Brain Barrier (BBB) which avoids exogenous damage through the vascular system, but also by an internal drainage barrier to avoid potentially harmful interference from other divisions. Based on these new findings, a new drug delivery method via ECS has been established, by which the drug arrives directly to the space around neural cells, and overcomes the impedance from BBB, thus solving the obstacles of low efficiency in traditional drug administration. At present, the new method and findings have been applied in many frontier fields of neuroscience, such as new drug development, aging, aerospace medicine, and artificial neural network modeling.

Please feel free to contact Professor Hongbin Han, hanhongbin@bjmu.edu.cn

Promoting Clinical Translation of Neuroscience

The Neuroscience Research Institute of Peking University, as the core research center for neuroscience at Peking University, is a key laboratory for Neuroscience of the Ministry of Education and the National Health Commission, China. Its history dates back to 1965, when Professor Han Ji-Sheng, now a member of Chinese Academy of Sciences (CAS) and internationally recognized for his research on acupuncture analgesia, began his pioneering work.

At present, the Institute is devoted to bench and bedside studies in both traditional Chinese medicine and modern medicines, with special focus on translation neuroscience. Apart from the neurobiology of acupuncture, the Institute’s other research interests include pain and analgesia; drug addiction and its treatment; and neurodegeneration, injury and repair. Publications have appeared in top journals, such as Nature Neuroscience, Nature Communications, and the Journal of Neuroscience. Its basic research outcomes have been translated into clinical devices, such as Han’s Acupoint Nerve Stimulator, already widely applied to treat various disorders, such as pain, assisted reproduction, and autism.

The Institute strives for excellence in both research and teaching, and aims to become a nationally leading and internationally recognized academic community of neuroscience. To accomplish this goal, we will continue to embrace advanced techniques, multidisciplinary approaches and collaborative spirit.

Please feel free to contact Ming Yi, Neuroscience Research Institute, Peking University, mingyi@hsc.pku.edu.cn
Exploration of Brain Extracellular Space in China

Professor Hongbin Han is the director of a key laboratory at Peking University (PKU) who is working on brain Extracellular Space (ECS), an incompletely understood and explored area which provides an immediate living environment for neural circuit and accounts for approximately 15%-20% of the total volume in a living brain.

Twenty-five years ago, as an interventional radiologist, Han engaged himself in the early diagnosis and treatment of cerebral ischemia. While studying the permeability of blood-brain barrier (BBB) by using dynamic contrast enhanced MRI, he, by accident, acquired a parameter of the space outside the cellular and vascular compartments. It was the first time that the ECS parameter of the human brain was detected and demonstrated by MRI. Since then, for 15 years, he and his team have been working on developing new ECS measuring methods which can visualize the dynamic drainage process of labeled brain interstitial fluid (ISF) and obtain ECS parameters in the deep brain. There are two methods, RTI-TMA+ and IOI, which can help acquire the biophysical parameters of brain ECS one or two-dimensionally, while the ECS in the deep brain cannot be detected and analyzed. Tracer-based MRI, the only one based on anisotropic modeling, can acquire and calculate the molecular diffusion parameters on a large scale and visualize the drainage route of the labeled ISF in the whole brain.

By using their self-developed measuring system, Prof. Han and his team have made a series of discoveries about ECS and ISF. They have found that the brain ISF drains in a compartmentalized ECS system and the biophysical characteristics in separated ECS divisions are different: the traced ISF from the caudate nucleus drains to the ipsilateral cortex along myelin fiber tracts, while in the opposite direction, its movement to the adjacent thalamus is completely impeded by a barrier structure which has been identified as the converged, compact myelin fascicle. After verifying the nature of the barrier structure between different drainage divisions, Prof. Han proposed the hypothesis of "compartmentalized homeostasis" and thus demonstrated that the brain is protected not only by BBB which avoids exogenous damage through the vascular system, but also by an internal ISF drainage barrier to avoid harmful interference from other ECS divisions.

With the new findings and the proposed hypothesis, an innovative therapeutic method for encephalopathy with local drug delivery via the brain ECS has been established. By using this new administration method, the drug is delivered directly to the space around neurons or target regions, overwhelming the impedance from BBB, thus removing the obstacles of low efficiency in traditional drug administration and re-adapting Citicoline, a neuroprotective drug declared ineffective by Nature Reviews Neuroscience in 2012. As the tracer-based MRI method can accurately calculate and predict the drug transportation and distribution routes in ECS, the location of drug administration and the concentration dose can be precisely designed according to the characteristics of the lesions. The results have shown that the treatment effect, with only 1/800 of the standard dosage, is 6 times better than the traditional method. Furthermore, the efficiency in administering the herbal medicine "Acetoside" via ECS at PKU School of Pharmaceutical Sciences, has also been enhanced. The research was approved as a US patented invention in 2015. Recently, a non-invasive brain ECS imaging technique has been established using MRI, which can scan ECS structure in the human brain.

Today, these new measuring techniques and technologies have been applied in many frontier fields, such as neuroscience, new drug development, development and aging, aerospace medicine, clinical encephalopathy treatment and artificial neural network modeling. Neurologists used to focus only on brain cells and neural circuit, and few achievements have been made in treating AD and stroke patients via the two-compartment model. With the two-compartment model upgraded to the three-compartment model, more breakthroughs in neuroscience are expected to be made in the future.

Please feel free to contact Professor Hongbin Han, hanhongbin@bjmu.edu.cn
Alzheimer’s research reset

After some costly and disappointing drug trial failures, the field welcomes a funding surge, tools for tracking disease, and interdisciplinary collaborations to tackle one of science’s most stubborn puzzles. By Kendall Powell

In the last five years, as several large clinical trials testing drugs for Alzheimer’s disease failed, the field came to a stark conclusion: These approaches did nothing to slow down—let alone reverse—the course of the disease once patients already exhibited symptoms of early dementia.

“We think now that the disease develops over 25 years or so,” says Eric McDade, cognitive neurologist at Washington University in St. Louis School of Medicine, and a coinvestigator on an 11-year observational study of 500 patients who have inherited mutations that put them at risk for early-onset forms of Alzheimer’s disease.

The failed trials, along with the dawning realization that the disease unfolds over decades, have put the entire field on a reset—to develop and test interventions that can be used much earlier, to discover new targets beyond misfolded amyloid and tau proteins, and to fund large, interdisciplinary, big data collaborations.

Advances in understanding the role of neuroinflammation, new biomarkers and research tools, and an influx of research funding mean it’s a good time to make a career move into the Alzheimer’s field. As history has shown, there won’t be any easy answers, and advances will come only through large collaborations that require a hefty dose of teamwork and heaping amounts of perseverance.

“Most people who have thought about the role of amyloid in Alzheimer’s know that we’ll also need to identify different ways of intervening,” says McDade, also associate director of the Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU), a worldwide collaboration that connects researchers studying the unique population of people at high risk for early-onset disease. “There’s never been a better time for moving into Alzheimer’s research.”

Multifaceted disease, many approaches

Worldwide, 47 million people have Alzheimer’s disease or related dementias, and that number is predicted to double in the next 20 years. Aging is by far the biggest risk factor for developing Alzheimer’s—if everyone lived to be 85, one in two people would develop dementia. The lion’s share of Alzheimer’s research and drug discovery to date has focused on misfolded amyloid and tau proteins, which aggregate to form plaques (amyloid) and tangles (tau) in the brain. But the body’s attempt to clear the sticky proteins might also be contributing to or causing the neurodegeneration. Drug trials have almost exclusively sought to use antibodies targeted toward these two proteins to try to attack and clear the misfolded forms or mop up soluble forms, or to inhibit enzymes responsible for generating the miscreant peptides.

Ricardo Dolmetsch, global head of neuroscience for Novartis in Cambridge, Massachusetts, paints a rosier view of the field’s failures as representing big leaps in understanding Alzheimer’s. “We’ve learned a lot from the trials, and our capacity to measure disease progress is getting much better,” he says. “There are a lot of really exciting experiments to do now.”

Because those experiments run the gamut from nearly every imaginable corner of biomedical science, researchers with any biology or clinical background, or even training in engineering and computational science, can find a way to move into Alzheimer’s work. Expertise in neuroscience and protein folding alone are no longer ideal, or even absolutely required.

Upcoming features
Top Employers Survey—October 25 ■ Diversity/Inclusion—January 24 ■ Postdocs—August 21
“There’s never been a better time for moving into Alzheimer’s research.”
– Eric McDade

“It’s very exciting in terms of careers, because we need people doing biochemical analysis and mass spectroscopy, geneticists, cell biologists, pathologists, and those running animal studies,” says Paul Aisen, director of University of Southern California’s Alzheimer’s Therapeutic Research Institute (ATRI) in San Diego.

Projects in progress
At the Alzheimer’s Drug Discovery Foundation (ADDF), a nonprofit charity based in New York City, diversity is reflected in the research projects being funded there. “We’re really seeing every type of different approach to Alzheimer’s disease and related dementias,” says Lauren Friedman, director of scientific affairs at ADDF. The areas being explored include the vascular system, epigenetics, neuroprotection, synaptic health, immunity and inflammation, and metabolic dysfunction, among others.

Neuroinflammation and proteostasis, or the management of proteins within cells, are trending areas of research in ADDF’s portfolio. Researchers investigating proteostasis would like to find ways to boost the cell’s “garbage disposal” systems, which identify misfolded, clumping proteins and chew them up for recycling.

Like other companies, Novartis is exploring targets in inflammation and the immune system. Dolmetsch notes that the field has just begun to sort through all of the activated inflammatory cells that show up in Alzheimer’s patients’ brains and to characterize their various states of activity and exhaustion. Exhausted microglia, the custodians of the brain, for example, start pumping out cytokines to call up more cells (T cells, B cells, macrophages), which leads to chronic inflammation.

Such an inflammation might be fine for a temporary response to an injury in, say, the finger. But as a chronic state, “it doesn’t work so well in your brain,” Dolmetsch says. For neuroinflammation projects, Novartis looks for scientists who have training with overlaps between neuroscience, immunology, and bioinformatics.

The George & Anne Ryan Institute for Neuroscience at the University of Rhode Island in Kingston investigates underexplored factors in brain health, including the roles of vasculature, immunology, and neuroinflammation as well as lifestyle and environment in Alzheimer’s disease and other neurodegenerative disorders. Behavioral neuroscientist John Robinson works on rodent models of how exercise might play a role in modifying or preventing Alzheimer’s. “The biggest risk factor for Alzheimer’s is age,” he notes, which is, unfortunately, not modifiable. “But we often say that what’s good for the heart is good for the brain.”

Another booming area of Alzheimer’s research is the development of biomarkers and diagnostic tests to monitor disease presence and progression. Radioactive positron emission tomography (PET) tracers enable physicians to image and measure amyloid and tau proteins in the brains of living patients. Other biomarkers can be measured precisely from collecting cerebral spinal fluid. However, both types of tests are invasive, and PET scans are expensive.

“We need a blood test like [the one] we have for cholesterol that can be done in any doctor’s office quickly and inexpensively,” says Friedman. To spur such development, ADDF has teamed up with Bill Gates and other philanthropists to fund the Diagnostics Accelerator program. Friedman says the program anticipates awarding about $10 million in the first round of funding. So far it has funded projects for blood tests and tests that detect amyloid or vascular changes in the retina, and is reviewing applications for digital tests that use a smartphone or tablet to monitor disease signs or symptoms.

Big data requires big money
Dedicated Alzheimer’s research funding levels have never been higher. “There has been a dramatic boost in funding during the last few years,” says Laurie Ryan, chief of the Dementias of Aging Branch of the National Institute on Aging (NIA) in Bethesda, Maryland, adding that the U.S. National Institutes of Health (NIH) funding specifically for Alzheimer’s and related dementias research has blossomed from around USD 440 million in 2011 to USD 2.3 billion this year.

In 2012, the United States launched the National Plan to Address Alzheimer’s Disease and set a goal of treating and preventing Alzheimer’s and related dementias by 2025. In support of the National Plan, NIH developed a research framework to enable the development of therapies for individuals at all stages of the disease. Suzana Pentenceska, director of the Office for Strategic Development and Partnerships in NIA’s Division of Neuroscience, says the increased funding and new framework bring many opportunities for Alzheimer’s researchers in both academia and small businesses— ranging from basic, discovery research to all stages of therapy development.

One of those opportunities, the Accelerating Medicines Partnership Alzheimer’s Disease Project, or (AMP)-AD, is a public–private partnership that brings together six NIA-funded academic teams, four biopharmaceutical companies, and five nonprofit organizations. Co-led by Ryan and Pentenceska, the five-year, USD 185 million collaboration is focused on the discovery of new therapies and biomarkers for Alzheimer’s by harnessing the power of big data and enabling rapid data sharing.

NIA requires prepublication release of data to the wider research community through the AMP-AD Knowledge Portal and the associated web-based interactive platform Agora, where biologists can peruse 500 predicted target genes that one or more teams have identified to date as well as the data backing up those predictions.

There’s no embargo on the secondary use of the data by other laboratories, says Pentenceska, who leads the cont.>
target discovery arm of the AMP-AD. “It’s empowering young investigators to tap into resources that would take years for a single lab to generate,” she says.

Similarly, ADDF has a partnership with Harrington Discovery Institute to help academic scientists spin their good ideas into drugs that could be tested in the clinic. Grant awardees, who receive up to USD 600,000 for two years, will be connected to industry consultants to help shepherd their research through drug discovery and preclinical phases to develop potential therapies.

Another innovative NIA translational program, the Alzheimer’s Clinical Trials Consortium (ACTC), was launched in 2017 with nearly USD 70 million in support for five years, to accelerate studies of Alzheimer’s and related dementia therapies. The ACTC helps researchers with new therapeutics connect to leading Alzheimer’s clinical experts at 35 sites around the United States. The program solicits ideas first, and then, for those approved, collaboratively develops those ideas into a clinical trial NIA R01 grant application.

This effort also promotes open science with data-sharing requirements. For pivotal clinical trials, participants in the consortium are required to make their patient screening and prerandomization data available within 12 months of enrollment completion and to make their postrandomization data and biosamples available upon trial completion, regulatory approval, or within 18 months, whichever comes first. Making the data available not only honors trial participants, says Ryan, but gives the field much-needed information to solve an incredibly complex problem. “It’s a heterogeneous disease and we need as many eyes on the data and as many minds focused on solving the problem as possible.”

Pharmaceutical company Eisai brought Aricept, one of the first Alzheimer’s drugs, to market; Eisai also has two anti-amyloid compounds in Phase III clinical trials and is investing in more research as well. In July, Eisai opened the Center for Genetics Guided Dementia Discovery, dedicated to exploratory immunodementia research. The facility, located in Cambridge, Massachusetts, will host 130 employees, including new hires, interns, and postdocs, and an incubator for Cambridge-based startup companies in neuroscience therapeutics.

McDade notes that there’s a shortage of people with M.D./Ph.D.s who have the medical training necessary to do clinical research, run clinical trials, and develop appropriate diagnostic tests. He encourages any early-career researchers with an interest in the field to find collaborators. “It’s extremely bullish—this is the time to come into the field.”

Wanted: Diverse skills

With the emergence of so many new avenues of Alzheimer’s studies, researchers can come from a wide variety of biomedical backgrounds, experts say. Mike Gold, vice president of neuroscience development at the biopharmaceutical firm AbbVie in North Chicago, Illinois, notes that his company and others working on solutions for Alzheimer’s want to recruit from biology backgrounds in molecular genetics, systems biology, electrophysiology, cell biology, bioinformatics, and beyond. “Do you have an interest in radiochemistry to develop new diagnostic ligands? Are you someone who wants to develop animal models to look at protein transition?” he asks. “We have a place for you.”

But the interdisciplinary and “collaboratory” nature of these projects requires that early-career researchers also “firm up their soft skills,” says Petanceska. Young investigators working in large consortia who become versed in the various languages of computational biologists, clinicians, or drug discovery experts will be better placed to contribute to projects and eventually lead teams. Friedman agrees that researchers must have strong communications skills. Any scientist should be able to boil down the complexity of their project into why it’s important for funders, investors, other scientists, and the public in a honed elevator pitch.

“Collaboration has been essential, and it’s going to be even more so,” says Robinson. He advises graduate students and postdocs to practice the art of collaboration early. Neriman Botas, Eisai’s executive vice president of human resources and corporate communications in Woodcliff Lake, New Jersey, says that one way to practice collaboration is to have a “broadness mindset” when you are in a meeting. “That means you focus more on what you don’t know, no matter how much of an expert you are, [and try] to ask questions and be tolerant and respectful when seeking input from others.”

Similarly, Novartis, recruiters look for emotional resilience in workers. These are key qualities for a field where most things fail and often fail big, says Dolmetsch.

Botas encourages candidates to be prepared for “behavioral interviewing”—that is, to have anecdotes and examples ready that show how they persisted to overcome a problem in their graduate or postdoctoral work, or how they worked collaboratively in a team or drew on others’ expertise to get things done.

Gold notes that despite the above-average dose of scientific frustration faced by Alzheimer’s researchers, there is a bit of a trade-off for them. “You get to work alongside extraordinary people fighting the battle,” he says. “We need creative scientists willing to bring different ideas to the table and try radically different approaches. That takes people with courage and a sense of adventure.”

Kendall Powell is a freelance science writer based in Lafayette, Colorado.
The McGovern Institute for Brain Research is accepting nominations for the 17th annual Edward M. Scolnick Prize in Neuroscience. The $150,000 prize recognizes an outstanding discovery or significant advance in the field of neuroscience. The prize ceremony, which includes a public lecture at MIT, will take place in Spring 2020. A dinner for the recipient and invited guests follows the prize lecture.

Nomination Deadline: December 15, 2019

Nomination procedures:
Candidates for the award must be nominated by individuals affiliated with universities, hospitals, medical schools, or research institutes, with a background in neuroscience. Self-nomination is not permitted. Each nomination should include:
• A biosketch or CV of the nominee.
• A letter of nomination with a summary and analysis of the major contributions of the nominee to the field of neuroscience.
• Up to two representative reprints will be accepted.

Selection Procedure:
• Members of the selection committee and faculty affiliated with MIT are not eligible.
• Announcement of the award recipient will be made in January 2020.
• Recipient must attend all events to be awarded the prize.

Past Scolnick Prize Recipients:

Send nomination packet to: gwolf@mit.edu

For more information: mcgovern.mit.edu/scolnick
10 ways that Science Careers can help advance your career

1. Register for a free online account on ScienceCareers.org.

2. Search thousands of job postings and find your perfect job.

3. Sign up to receive e-mail alerts about job postings that match your criteria.

4. Upload your resume into our database and connect with employers.

5. Watch one of our many webinars on different career topics such as job searching, networking, and more.

6. Download our career booklets, including Career Basics, Careers Beyond the Bench, and Developing Your Skills.

7. Complete an interactive, personalized career plan at “my IDP.”

8. Visit our Employer Profiles to learn more about prospective employers.

9. Research graduate program information and find a program right for you.

10. Read relevant career advice articles from our library of thousands.

Visit ScienceCareers.org today — all resources are free
The John Innes Centre (JIC), Norwich, UK is a world leading centre of excellence in plant and microbial sciences based on the Norwich Research Park. We are inviting applications from outstanding researchers who either hold, or wish to apply for Independent Research Fellowships [such as a UKRI Future Leaders Fellowship (https://www.ukri.org/funding/funding-opportunities/future-leaders-fellowships/), a Royal Society University Research Fellowship (http://royalsociety.org/grants/schemes/university-research/), or a BBSRC David Phillips Fellowship (https://bbsrc.ukri.org/funding/filter/david-phillips/)]. Shortlisted candidates will be invited to give a seminar at a Fellows Conference at the JIC on 03 February 2020. At the conference, you will also be able to discuss your proposals, the development of your group and your future career plans in depth with JIC faculty.

After the conference, we will select and mentor outstanding candidates in writing Fellowship applications and/or offer the opportunity to move existing Fellowships to the JIC. Candidates who win Fellowships will be considered for transfer onto tenure-track at 3 years, and if transferred, for tenure at 5 years. Considerable additional resources will be provided to Fellows by the Centre. For further information, contact mark.buttner@jic.ac.uk

Further details and particulars can be found at https://www.jic.ac.uk/vacancies/

To apply: please e-mail a 2-page summary of your research plan, a copy of your CV and arrange for three letters of recommendation to be e-mailed to fellows@jic.ac.uk by Friday 22 November 2019. Before applying please read our Privacy Notice.

The John Innes Centre is a registered charity (No 223852) grant-aided by the Biotechnology and Biological Sciences Research Council and is an Equal Opportunities Employer and supports flexible working.