












egress from thymus, DC-dependent exposure
to active TGF-b in secondary lymphoid organs
(SLOs) renders multiple genes important in
their differentiation, including Itgae, more
accessible in naïve CD8+ T cells. Despite the
transient loss of gene expression upon T cell
activation, at least of Cd103, this enhanced
accessibility potentially facilitates the accel-
erated transcriptional activation and more
efficient formation of eTRM cells.

Preconditioning occurs in lymph nodes, but
not in the spleen
Because the majority of CD8 SP thymocytes
expressed CD103, it was possible that some
CD103+ naïve CD8+ T cells were recent thymic
emigrants (RTEs) that transiently retained
CD103 expression induced in the thymus in-
dependently of aV-expressing DCs. Indeed,
in WT mice younger than 5 weeks of age, in
which the majority of peripheral T cells are

RTEs (30), CD103 expression on naïve CD8+

T cells was higher than in mice older than
10 weeks of age, when the thymic output rate
has stabilized. This difference was even more
pronounced in aV-DDC mice, in which naïve
CD8+ T cells included a distinct CD103hi pop-
ulation in young animals that was absent
in adult mice (Fig. 5E). To further assess the
magnitude of the contribution of RTEs to the
CD103hi population of naïve CD8+ T cells in
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Fig. 5. CD103 is actively maintained on naïve CD8+ T cells through
aV-integrin–expressing DCs. (A) ImmGen database RNA-seq gene expression
analysis of naïve CD8+ T cells. Green bars denote selected genes known
to be expressed at the protein level in naïve T cells; red bars denote selected
genes known to be expressed at very low levels or not to be expressed in
naïve T cells. Black bars denote skin eTRM cell genes having greater
accessibility in naïve CD8+ T cells from WT as compared to aV-DDC mice.
White bars denote other skin eTRM cell genes not differentially accessible in
cells from WT compared to aV-DDC mice. (B) Expression of CD103 on
CD44lo CD62Lhi naïve CD4+ and CD8+ T cells (pooled from LNs and spleen)
and on thymocyte subsets from aV-DDC and WT littermate control mice.
Data are medians and replicates and are representative of four independent

experiments. (C) 106 naïve polyclonal CD8+ T cells from aV-DDC were
adoptively transferred into CD45.1 congenic C57BL/6 mice or vice versa
and reisolated 3 weeks later from pooled LNs and spleens for analysis of
CD103 expression. Data are medians and replicates and are representative of
three independent experiments. (D) 106 naïve OT-I T cells were adoptively
transferred into aV-DDC or WT hosts and isolated from pooled LNs and
spleens 3 weeks later for analysis of CD103 expression. Data are medians
and replicates and are representative of three independent experiments.
(E) CD103 expression on CD44lo naïve CD8+ T cells from the peripheral
blood of WT and aV-DDC mice at less than 5 or more than 10 weeks of age.
Data are medians and replicates. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001 [two-tailed unpaired Student’s t tests in (B) to (-E)].
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adult WT mice, we treated them with the
functional S1P-receptor antagonist FTY720.
This blocks lymphocyte tissue egress and
thereby “traps” T cells within their respec-
tive tissue locations, including the thymus
(31). If CD103hi naïve CD8+ T cells were pre-
dominantly RTEs, this treatment would be
predicted to produce a decrease in CD103
expression in SLOs. However, CD103 expres-
sion did not decrease, but further increased
on naïve CD8+ T cells trapped in LNs. By con-
trast, CD103 expression decreased in cells
trapped in the spleen (Fig. 6A). Thus, RTEs do
not appear to make a large contribution to
the CD103hi naïve CD8+ T cell pool in adult
mice. Furthermore, CD103 expression in peri-
pheral T cells is preferentially induced and
sustained in LNs, but not in the spleen. To test

this hypothesis in an independent model, we
analyzed lymphotoxin-a–deficient (Lta–/–)
mice, which lack LNs (32). Naïve CD8+ T cells
in these animals expressed low levels of CD103,
comparable to those in aV-DC mice (Fig. 6B).
Expression was, however, normal in Lta–/–

CD8 SP thymocytes and could be restored
in splenic Lta–/– naïve CD8+ T cells by expo-
sure to TGF-b in vitro (Fig. 6B and fig. S6A).
Thus, there was no cell-intrinsic defect ob-
structing TGF-b–driven induction of CD103.
TEFF-like cells did not accumulate in spleens
of Lta–/– mice, indicating that this feature of
aV-DDC mice was not directly caused by a
lack of exposure of naïve CD8+ T cells to TGF-
b–activating aV+ DC in LNs (fig. S6B).
Immune responses to skin challenge are

predicted to be impaired in Lta–/– mice,

given their lack of LNs. Therefore, to assess
eTRM cell formation in these animals, we re-
sorted to a “prime and pull” approach, whereby
systemic T cell activation is combined with
locally induced tissue inflammation to elicit
TRM cell formation (33, 34). Four weeks after
intravenous (i.v.) injection with OVA-expressing
Listeria monocytogenes and skin treatment
of LTa–/– mice with DNFB, the frequency of
CD103+ skin eTRM cells was reduced to levels
comparable to those of DNFB-treated aV-DDC
mice (Fig. 6C). Thus, low CD103 expression
reflective of impaired naïve CD8+ T cell
conditioning in Lta–/– mice is also linked to
a profound reduction in the ability to form
eTRM cells in skin upon immune challenge.
To further assess whether LNs draining

different tissues varied in their capacity for T
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Fig. 6. Naïve CD8+ T cell
preconditioning occurs in
lymph nodes, but not
spleens. (A) C57BL/6 mice
were treated with FTY720 to
block lymphocyte egress
from all lymphoid tissues.
After 4 weeks of continued
treatment, naïve CD8+

T cells in LNs and spleen
were analyzed for CD103
expression. Data are
medians and replicates and
are representative of six
independent experiments.
(B) CD103 expression in
naïve CD8+ T cells in spleens
and thymi of WT and Lta–/–

mice. Data are medians and
replicates and are represent-
ative of two independent
experiments. (C) Frequency
of CD69+ CD103+ eTRM
cells in skin 4 weeks
after “prime and pull”
immune challenge through
i.v. injection with OVA-
expressing L. monocytogenes
to produce a circulating
TEFF cell pool (“prime”)
followed by DNFB+ treatment
of ear skin (“pull”) of WT
and Lta–/– mice. Data are
medians and replicates and
are representative of four
independent experiments.
(D) CD103 expression of
naïve CD8+ T cells from
aV-DDC donors in the
indicated SLOs of
continuously FTY720-treated
WT hosts 4 weeks after
adoptive transfer. Data are medians and replicates and are representative of two independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
[two-tailed unpaired Student’s t tests in (A) to (C), one-way ANOVA in (D)].
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cell conditioning, we transferred CD103lo naïve
CD8+ T cells from aV-DDC mice into FTY720-
treatedWT hosts. Four weeks later, CD8+ T cells
in mesenteric LNs showed the most pronounced
increase in expression of CD103, followed by
CD8+ T cells in skin-draining LNs. By contrast,
the induction of CD103 was moderate in lung-
draining mediastinal LNs and absent in spleen
(Fig. 6D). Thus, aV-expressing DCs in LNs are
specialized to precondition naïve CD8+ T cells
to differentiate into eTRM cells.

Preconditioning activity in aVb8-expressing
migratory, but not resident, DCs

A key difference between LNs and spleen is
the presence in the former of a CD11cint MHC
IIhi migratory DC (mDC) population (Fig. 7A)
and (35). These cells continually traffic from
nonlymphoid tissues to draining LNs via the
lymph. Although both mDCs and resident
DCs (rDCs), including CD11b+, CD103+, and
CD8+ subsets, expressed aV, only mDCs ex-
pressed the b8-integrin chain (Fig. 7B) to form
the aVb8 heterodimer that enables them to
activate TGF-b (17).
Naïve CD8+ T cells expressed CD103 at sim-

ilarly low levels in mice lacking b8 integrin in
DCs (Cd11cCre × Itgb8 fl/f, or “b8-DDC” mice)
as in aV-DDC mice, although this defect was
again less pronounced in very young mice
with the highest frequencies of RTEs (fig. S6,
C and D). Reduced eTRM cell formation in
the skin of b8-DDC mice further confirmed a
role specifically for aVb8 in T cell precondi-
tioning (fig. S6E). However, the reduction in
skin eTRM cells was less severe than in aV-

DDC mice, suggesting that either TGF-b–
independent functions of DC-expressed aV
integrins, or TGF-b activation through other
aV heterodimers expressed by DC, such as
aVb3 and aVb5, contribute to TGF-b activity
on CD8+ T cells.
To further test if naïve T cell precondition-

ing through TGF-b depends on mDCs, we
analyzed CCR7-deficient (Ccr7–/–) mice, in
which DC trafficking from peripheral tissues
to draining LNs is defective and in which
mDCs are absent from both the spleen and
LNs (Fig. 7C) (36). Similar to the results in
aV-DC and Lta–/– mice, CD103 expression
was reduced on naïve CD8+ T cells in Ccr7–/–

mice (Fig. 7D). However, because Ccr7–/–

T cells may also be excluded from TGF-b–
mediated preconditioning on the basis of
their impaired ability to enter LNs, we trans-
ferred CCR7-sufficient OT-I T cells that can
enter LNs into Ccr7–/– hosts. These cells also
lost CD103 expression (Fig. 7E), confirming
the critical role for CCR7-dependent migra-
tion of aV-expressing DCs from the skin to the
LNs to precondition naïve CD8+ T cells to
differentiate into eTRM cells in the skin.

eTRM cell preconditioning occurs through MHC
I–dependent DC–T cell interactions

Naïve CD8+ T cell survival and responsive-
ness depends on noncognate, but MHC I–
dependent, interactions with DCs (37). The
question arose whether resting CD8+ T cells re-
ceive TGF-b signals during MHC-I–dependent
physical interactions with aV-integrin–expressing
DCs, or if DCs produce a pool of active TGF-b

that is available indiscriminately to all T cells.
We therefore generated mixed bone marrow
chimeras (BMCs) fromMHC I–deficient B2m–/–

and aV-DDC donors to segregate expression
of these two proteins onDCs and to test wheth-
er self-peptide–MHC I ligands and TGF-b–
activating aV integrins need to be coexpressed
by the same DC for naïve T cell precondition-
ing to be effective. This strategy was only
partially effective because about a third of
DCs continued to coexpress MHC I and aV,
possibly as a result of transfer of membrane
proteins between DCs (38). The remaining
two-thirds were divided evenly between MHC
I–expressing and aV-expressing subsets (Fig. 8A).
However, even a partial reduction in the fre-
quency of DCs coexpressing MHC I and aV
resulted in a decrease in the frequency of
CD103+ naïve CD8+ T cells, as compared to
control BMCs (Fig. 8B). Accordingly, the ca-
pacity of OT-I cells transferred into B2m–/–:
aV-DDC BMCs to form eTRM cells in the skin
upon vaccination was impaired (Fig. 8C). Thus,
aV-expressing DCs in LNs do not produce a
public pool of active TGF-b available to all
T cells but rather present it to naïve CD8+

T cells discretely during MHC I–dependent
interactions.

Discussion

In this study, we show that MHC I–dependent
interactions with DCs expressing TGF-b–
activating aV integrins epigenetically pre-
condition naïve CD8+ T cells during the steady
state to efficiently form epidermal TRM cells
upon foreign antigen encounter. This activity
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Fig. 7. aVb8-expressing migratory DCs precondition naïve CD8+ T cells for
epithelial TRM cell formation in skin. (A) CD11cint MHC IIhi migratory DCs in
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purified by FACS and analyzed for expression of aV and b8 integrin mRNA
by RT-qPCR. Data are means and replicates and are representative of
two independent experiments. (C) CD11cint MHC IIhi migratory DCs are absent

in LNs of Ccr7–/– mice. (D) CD103 expression in naïve CD8+ T cells in pooled
LNs and spleen of Ccr7–/– mice. Data are medians and replicates and are
representative of four independent experiments. (E) 106 naive OT-I T cells were
adoptively transferred into Ccr7–/– or C57BL/6 hosts. CD103 expression on
naïve OT-I cells from pooled LNs and spleen was analyzed 3 weeks later. Data are
medians and replicates and are representative of two independent experiments.
**p < 0.01, ****p < 0.0001 [two-tailed unpaired Student’s t tests in (D) and (E)].
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is restricted to migratory DCs found in LNs,
but not in the spleen, delineating an un-
anticipated division of labor between these
lymphoid tissues.
DCs are known to imprint specific migra-

tory patterns in the T cells they activate. For
instance, DCs in skin-draining LNs induce the
preferential expression of homing molecules
for entry into skin, whereas DCs in mesen-
teric LNs elicit tropism for the small intestine
(39–41). eTRM cell preconditioning is distinct
in that it already occurs during immune
homeostasis, whereas imprinting for tissue-
selective homing occurs during T cell priming.
Furthermore, aV-integrin–mediated exposure
to TGF-b is similar in skin and mesenteric
LNs, judging from comparable induction of
CD103 in naïve T cells at both sites. Precondi-
tioning was, however, less pronounced in
mediastinal LNs, raising the possibility that
migratory DCs from different tissues possess
varying capacities for TGF-b activation in
draining LNs.
It is perhaps counterintuitive that the pro-

pensity for eTRM cell formation is conferred
upon T cells not during antigenic priming in
LNs, but rather earlier, under resting condi-
tions. As a result, naïve CD8+ T cells, by tran-
siently retaining the preconditioned state
during recirculation, remain endowed with
the potential to form eTRM cells even when
activated in other SLOs, such as the spleen.

In this scenario, the propensity for eTRM cell
differentiation does not result from activa-
tion at a specific anatomical site, but may
instead be restricted to a subset of a heterog-
enous naïve T cell pool that is competent
to receive TGF-b signals from aV-integrin–
expressing mDCs at steady state. Although
the naïve T cell repertoire is generally viewed
as functionally homogeneous and uncommitted
to any particular memory or effector fate (42),
the precedent for such heterogeneity comes
from studies on the developmental history
of individual naïve T cells (43) or their self-
reactivity (44). In both studies, subsets were
defined with an enhanced ability to rapidly
differentiate into short-lived effector cells. Sim-
ilarly, cell-intrinsic properties that remain to
be defined may render a subset of naïve CD8+

T cells, identifiable by expression of the CD103
integrin, competent for TGF-b–mediated pre-
conditioning for a future eTRM cell fate.
It has long remained unclear how the

multitude of biological functions of a widely
secreted cytokine like TGF-b on various cell
types could be regulated and coordinated.
Recently, LRRC33 was identified as a previ-
ously unknown TGF-b milieu protein expressed
on microglia, which enables highly localized
TGF-b activity in the central nervous system
in coordination with aVb8-integrins on glial
cells (45). Although no milieu proteins ex-
pressed by naïve CD8+ T cells have yet been

identified, our observation that exposure to
activated TGF-b is limited to cells that en-
gage in homeostatic, MHC-I–restricted phys-
ical interactions with aV-expressing DCs further
illustrates an important general principle:
namely, that the potent biological activity of
this pleiotropic cytokine can be restricted to
individual cells through a two-cell mechanism
and thereby “privatized.”
It will be of interest to determine if the DC-

driven, TGF-b–dependent preconditioning of
naïve CD8+ T cells in LNs can be limiting in
situations where maximal formation of eTRM
cells would be desirable (e.g., during vaccina-
tion). In such cases, transiently optimizing
local or systemic TGF-b activity in prepara-
tion for vaccine administration, ideally tar-
geted to CD8+ T cells in SLOs, may allow for
the manipulation of T cell memory differen-
tiation to improve vaccine-induced protection.
Conversely, approaches to disrupt naïve T cell
preconditioning might serve to attenuate
de novo eTRM cell formation and aid in the
treatment of diseases such as psoriasis, in
which eTRM cells play pathogenic roles.

Materials and methods
Mice

Mice with either floxed aV alleles (Itgav
fl/fl) or

floxed b8 alleles (Itgb8
fl/fl) were previously de-

scribed (15, 17) and crossed to CD11cCre BAC-
transgenicmice (16) obtained fromThe Jackson
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experiments. *p < 0.05, ****p < 0.0001 [two-tailed unpaired Student’s
t tests in (B) and (C)].

RESEARCH | RESEARCH ARTICLE
on January 20, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


Laboratory. C57BL/6J, CD45.1 or Thy1.1 con-
genic C57BL/6J, OT-I × Tcra–/–, Cd103–/–,
B2m–/–,Ccr7–/–, andLta–/–micewere purchased
from The Jackson Laboratory and further bred
in-house. Animals were housed in specific
pathogen-free facilities at the Massachusetts
General Hospital (MGH) and all experimen-
tal studies were approved and performed in
accordance with guidelines and regulations
implemented by the MGH Institutional Ani-
mal Care and Use Committee (IACUC).

Irradiation bone marrow chimeras

Recipient mice were i.p. injected with 200 mg
of a-NK1.1 monoclonal antibodies (mAbs)
(clone PK136, BioXCell) 1 day prior to ir-
radiation to transiently deplete NK cells and
enhance engraftment of B2m–/– bone mar-
row. Bone marrow was dislodged from femurs
and tibiae of donormice by flushing with 10ml
of phosphate-buffered saline without Ca2+/Mg2+

(“PBS” hereafter) and filtered once through a
40-mm filter. Cells from either WT or aV-DDC
mice were mixed at a 1:1 ratio with cells from
B2m–/– mice and resuspended at 5 × 107 total
cells/ml. Recipients were irradiated at 1000 rad
(cesium) in a rotating chamber and injected
retro-orbitally with 5 × 106 total donor bone
marrow cells/mouse in 100 ml of PBS. Mice
were provided sulfamethoxazole in their drink-
ing water for 4 weeks after irradiation.

DNA vaccination, mechanical skin irritation, and
DNFB treatment

For DNA vaccination against OVA, the 6162–
base pair (bp) expression plasmid pODCAGGS
was kindly provided by J. J.Moon. pODCAGGS
is derived from pCAGGS (46) and uses the CAG
promoter to drive expression of full length
chicken ovalbumin fused on its N terminus
to the leader sequence of the H-Kb a-chain
(MVPCTLLLLLAAALAPTQTRA) and fused
on its C terminus to 44 amino acids of the
transmembrane domain of H-2Db (HEGL-
PEPLTLRWEPPPSTDSYMVIVAVLGVL-
GAMAIIGAVVAFV) to achieve membrane
incorporation. Mice were anesthetized using
isoflurane. Ear or flank skin was shaved and
epilated using Nair hair removal cream. A
droplet of H20 containing 3 mg of pOD CAGGS
DNA was then tattooed into the skin using a
sterile disposable 11-needle bar mounted on a
rotary tattoo device (Biotouch), as previously
described (20). To create a transient inflam-
matory reaction through mechanical skin ir-
ritation alone, plasmid DNA was omitted
from this procedure. Alternatively, mice were
treated with 10 ml of 0.5% DNFB in a 4:1
acetone:olive oil emulsion to inflame ear skin.

HSV-OVA infection

HSV-OVA was obtained from T. Gebhardt
(University of Melbourne). For epicutaneous
infection by scarification a small (~5 mm2)

area of skin overlying the upper pole of the
spleen was abraded with 20 strokes of 150-grit
sandpaper attached to the end of a pencil
(47). Then, 106 plaque-forming units (PFU) of
HSV-OVA in 10 ml HBSS were applied to the
abraded site, and mice were bandaged for
2 days as described (47, 48). To measure viral
titers, a 1-cm2 area of skin surrounding the
infection site was harvested into Dulbecco’s
minimum essential medium (DMEM), cut
into small pieces, and snap frozen in a dry
ice–70% ethanol bath. The snap-frozen tissue
was thawed at 37°C in a water bath and
homogenized in gentleMACS M tubes in a
total volume of 2 ml using the RNA_01 pro-
tocol. Samples were centrifuged for 5 min at
500 × g to remove debris and aggregates and
supernatants serially diluted (range, 10−1 to
10−6) in serum-free Vero Medium (DMEM, 1%
HEPES, 1% GlutaMAX). Serially diluted virus
suspension (200 ml) was added to Vero cells
grown to 90% confluency in 24-well plates (in
duplicate for each sample and dilution). After
1 hour of incubation at 37°C with gentle rock-
ing of the plate every 10 to 15 min for even
distribution of virus, viral dilutions were as-
pirated, cells lightly washed with PBS, and
cultured for 2 days at 37°C in 1 ml/well of
incubation medium [DMEM, 1% HEPES, 1%
GlutaMAX, 1% penicillin–streptomycin, 5%
(nonfetal) bovine serum, 7.5 of mg/ml human
IgG]. Cells were then washed with PBS, stained
with 1 ml of crystal violet solution (20% EtOH,
80% H2O, 0.5 g/100 ml of crystal violet pow-
der) for 15 min, washed with H2O, and dried
overnight. Plaques were counted manually.

Prime and pull immune challenge

The attenuated OVA-expressing L.monocytogenes
strainL.m.-OVADactAwasprovidedbyJ. J.Moon
(MGH) and was grown in brain heart in-
fusion (BHI) medium containing 34 mg/ml of
chloramphenicol to an absorbance of ~0.1 at
600 nm. L.m.-OVA DactA (2 × 107 CFU) were
then injected intravenously into mice to in-
duce a systemic TEFF cell response (“Prime”).
Four days after infection,mice ears were treated
with DNFB, as described above, to produce
skin inflammation (“Pull”) and enable seed-
ing by TRM cells from the circulating pool of
TEFF cells.

Adoptive T cell transfers, in vitro activation
of T cells, and T cell depletion

Naïve CD8+ T cells were purified from LN and
spleen single-cell suspensions by immuno-
magnetic negative cell selection using the
Miltenyi naive CD8+ T cell isolation kit and
adoptively transferred into sex-matched recip-
ients by retro-orbital injection. For the in
vitro activation of T cells, OT-I × Tcra–/–

splenocytes were pulsed with 1 mMSIINFEKL
peptide (New England Peptide) in 1 ml of
T cell medium [RPMI, 10% fetal calf serum

(FCS), 1% HEPES, 1% sodium pyruvate, 1%
GlutaMAX, 1% nonessential amino acids,
55 mM 2-mercaptoethanol] for 1 hour at 37°C,
diluted in 9ml of T cellmedium, and cultured
at 37°C in 5%CO2. Two days later, 20 ng/ml of
IL-2 was added and cell density was main-
tained at 106 cells/ml. OT-I cells were adop-
tively transferred on day 5 after activation by
retro-orbital injection.
For T cell depletion, one dose of anti-Thy1.2

mAbs (3 mg, clone 30H12) was injected i.v.

FTY720 treatment

Mice received intraperitoneal injections of
1 mg/kg BW FTY720 (fingolimod) (Sigma-
Aldrich) in 150 ml of H20 every 2 to 3 days.

Naïve T cell treatment with TGF-b1

CD44lo naive CD8+ T cells were purified from
LNs and spleens by immunomagnetic negative
cell selection using the Miltenyi naive CD8+

T cell isolation kit. Cells were cultured in
96-well flat-bottom plates at a density of 2 ×
106 cells/ml in serum-free XVIVO10 medium
supplemented with 100 ng/ml of rmIL-15 and
5 ng/ml of rmIL-7 (BioLegend). Titrated
amounts of acid-activated recombinantmouse
TGF-b1 (Cell Signaling) were added as indi-
cated, and cells were cultured at 37°C in 5%
CO2 for 72 hours before analyzing CD103 sur-
face expression.

Isolation of cells from tissues and staining for
flow cytometry

For cell isolations from non-lymphoid tissues,
mice were i.v. injected with 3 mg of Alexa
Fluor 700- or fluorescein isothiocyanate (FITC)–
labeled a-CD45.2, or PE-Cy7-labeled a-CD8b
antibody 3 min prior to euthanasia to label
intravascular leukocytes for exclusion from
analysis. All organs were harvested into ice-
cold FACS (fluorescence-activated cell sort-
ing) buffer [PBS with 0.5% bovine serum
albumin (BSA) and 2 mM EDTA].
Skin was processed as previously described

(49). Briefly, separated dorsal and ventral halves
of ear skin or flank skin were minced into small
pieces and placed in 2.5 ml of digest buffer A
[DMEM; 2% fetal bovine serum (FBS); 1%
HEPES; 25 U/ml collagenase IV] or digest
buffer B [DMEM; 2%FBS; 1%HEPES; 125 mg/ml
liberase TM (Sigma-Aldrich); 0.5 mg/ml hyal-
uronidase Type I-S from bovine testes (Sigma-
Aldrich)] for 1 hour at 37°Cunder agitation, then
quenched with 10% FBS and 1.5 mMEDTA and
blended using a gentleMACS tissue blender
(Miltenyi, C tubes, m_impTumor_01 protocol).
Spleens, thymi, and LNs were minced and

passed through a 40-mmcell strainer. Red blood
cells were lysed with ACK lysis buffer as nec-
essary. For the isolation of DCs, minced spleens
and LNs were digested in digest buffer A for
20min under agitation at 37°C before passing
through a 40-mm cell strainer.
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Cell surface epitopes were stained in FACS
buffer in the dark at 4°C for 15 min, followed
by staining with fixable viability dye (Zombie
Dyes, BioLegend) at room temperature for
15 min. For detection of intracellular epitopes,
cells were fixed and permeabilized (eBioscience
Fixation/Permeabilization kit) and stained
with antibodies for 30 min in the dark at
room temperature. All antibodies used are
listed in table S2.

Histology

Mice were epilated (Nair) and excised ear skin
was fixed for 15 min at room temperature in
4% paraformaldehyde (PFA) (freshly diluted
from 16%), washed six times for 30 min each
time in PBS, and stored overnight in 30%
sucrose. Eighteen hours later, tissues were im-
mersed in OCT, snap-frozen in a dry ice–2-
methylbutane bath, and stored at −80°C until
sectioning. Frozen cross-sections (10 to 20 mm)
were air-dried at room temperature for 5 min
and loaded into a Shandon Immunostaining
Chamber with 1 ml of PBS. Tissues were fixed
again with 100 ml 4% PFA for 10 min, washed
with 1.2ml of PBS, and thenwashedwith 200 ml
of 0.3% PBST. Tissues were then blocked with
100 ml of blocking buffer (5% normal donkey
serum, 1% BSA, 2% cold-water-fish gelatin, 0.3%
Triton X-100 in PBS) for 30 min at room tem-
perature. Sections were incubated overnight
at 4°C with primary antibodies (in blocking
buffer, 100 ml total per slide), washedwith 1 ml
0.3% PBST, and incubated with streptavidin
for 1 hour at room temperature. Slides were
washed with 1 ml of 0.3% PBST and then 2 ml
of PBS. Slides were then mounted with 100 ml
of DAPI fluoromount (Southern Biotech)
and cured overnight in the dark at room tem-
perature. Images were acquired on a Zeiss
LSM 800 confocal microscope using a 20×/
0.8 NA (numerical aperture) dry lens and pro-
cessed using Imaris Software (Bitplane) and
ImageJ software (NIH).
The density of immune cells in skin was

determined by manual counting and extra-
polation of the number of cells per cm2 skin
surface on the basis of the number of cells
per section and the skin surface represented
by the section (10-mm thickness × measured
length of the epithelium in the field of view).
Nonconsecutive sections were analyzed for
quantification to avoid duplicate counts of
cells overlapping between sections.
Separate tissues (ear skin and large intes-

tine) from 7-week-old mice were fixed overnight
in neutral-buffered formalin (Sigma-Aldrich),
paraffin-embedded, sectioned, and stained
with hematoxylin and eosin.

ELISA of serum immunoglobulins

Serum immunoglobulins were measured as
previously described (50). Immulon 2HBmicro-
titer plates (DYNEX) were coated with 10 mg/ml

of goat anti-mouse Ig (Southern biotech) in
PBS at 4°C overnight. Plates were then blocked
with 1% BSA in PBS and incubated with se-
rial dilutions of serum samples in PBS. Spe-
cific Ig isotypes were detected using alkaline
phosphatase-conjugated isotype-specific anti-
bodies (Southern Biotech). Alkaline phospha-
tase activity was developed with disodium
p-nitrophenyl phosphate substrate (Southern
Biotech). Antibody concentrations were calcu-
lated as titers relative to purified Ig standards
(Southern Biotech).

Polymerase chain reaction (PCR) analysis of
floxed Itgav alleles

Five thousand cells of each type were purified
by FACS, and genomic DNA was extracted
using the Arcturus PicoPure DNA Extraction
Kit. DNA was amplified for 35 cycles with an
annealing temperature of 57°C using Q5 High
Fidelity DNA Polymerase and the following
primers: Intav4avf: 5′-TTCAGGACGGCACA-
AAGACCGTTG-3′; and Intav5b3: 5′-CACAA-
ATCAAGGATGACCAAACTGAG-3′. WT Itgav
and floxed Itgav allele products were sized
150 and 400 bp, respectively, whereas the
recombined floxed Itgav allele yielded no
product. The ratio of WT Itgav to floxed Itgav
product was determined for each sample and
normalized to the ratio in a tail sample of an
Itgav fl/wt control animal not expressing Cre
recombinase, to determine the degree of de-
letion in each cell type.

Preparation of genomic material and ATAC-seq
data analysis

LN CD44lo naïve CD8+ T cells (3 × 104 per
replicate) were purified by FACS into PBS
containing 10% FBS in DNA loBind Eppendorf
tubes. Pelleted cells were lysed in 50 ml of re-
action mix (25 ml of 2× tagment DNA (TD)
buffer, 2.5 ml of Tn5 enzyme, 0.25 ml of 2%
digitonin, and 22.25 ml of nuclease-free water).
The mix was incubated at 37°C for 30 min with
agitation at 300 rpm. DNA was purified using
a QIAgen MinElute Reaction Cleanup kit and
Nextera sequencing primers ligated using PCR
amplification. Agencourt AMPure XP bead
cleanup (Beckman Coulter/Agencourt) was used
post-PCR and library quality was verified using
a Tapestationmachine. Samples were sequenced
on an Illumina HiSeq 2000 sequencer using
paired-end 5′ bp reads.
For analysis of sequences, first, adapters

were trimmed using AdapterRemoval (v. 2.2.1a)
(51). Second, the paired-end ATAC-seq were
aligned to the mouse reference genome
(mm10) using Bowtie2 (2.3.4.1) (52) with
the following parameters: –no-discordant–no-
unal–no-mixed -X 2000. Third, the reads were
shifted (Tn5 insertion) after removing the reads
from mitochondrial DNA and duplicated reads.
ATAC-seq peak regions of the pooled sam-

ple were called using HOMER (v4.9.1) (53)

with the following parameters: -region -size
500 -minDist 50 -o auto -tbp 0. Then, the
fragment counts for each peak region for each
sample were obtained using bedtools (v2.24.0)
(54). Differentially accessible peak regions be-
tween conditions using the two replicates per
condition (adjusted p value ≤1 × 10−5) were
called using DESeq (v1.30.0) (55) using the
“pooled” dispersion estimation with the “local”
fit. Then, overlapping differentially accessible
peak regions (adjusted p value ≤1 × 10−5) per
condition were merged using bedtools. For
each merged peak region, as illustrated in
Fig. 4A, we associate adjusted p and log2 fold-
change values using the adjusted p and log2
fold-change values of the region of smallest
adjusted p value (among the regions prior to
merging).
ATAC-seq coverage tracks were generated

using deepTools (v.3.0.2) (56). The size factors
estimated by DESeq were used to normalize
ATAC-seq coverage tracks visualized in Figs. 4D
and fig. S4A.
HOMER was used to annotate the merged

differentially accessible regions per condition
and to calculate distances from DARs to the
closest transcription start sites to generate
Fig. 4B. Additionally, HOMER was used to
find enriched motifs in the merged differen-
tially accessible regions of each condition with
the following parameters: -size given -mask
-nomotif, and using the default motif collec-
tion (364 motifs). To generate Fig. 4C, we
used the motif family information included
in the HOMERmotif database and discarded
the families with the “?” symbol in their iden-
tifier. Moreover, we separated the KLF motifs
from the Zf family: The KLF family contains
all the KLF motifs and the Zf (others) family
contains all other Zf motifs.
The Genomic Regions Enrichment of Anno-

tations Tool (GREAT) was used for gene on-
tology and molecular signature enrichment
analysis (57). DARs were inputted into the
GREAT and gene associations were defined by
“basal plus extension” (basal as 5 kb upstream
of and 1 kb downstream from the TSS, and ex-
tension to estimate gene regulatory regions
1 Mb upstream and downstream of the TSS.)

Reverse transcriptase quantitative
PCR (RT-qPCR)

Dendritic cells from each indicated subset
(2 × 105 per subset) were purified by FACS
into TriZOL for RNA extraction and RNA was
further purified using RNeasy Plus Micro or
Mini Kit (Qiagen). RNA was reverse tran-
scribed using a High Capacity cDNA Tran-
scription Kit (Life Technologies) and RT-qPCR
was performed using SYBR Green detection
(Roche LightCycler 480 kit). Primer sequen-
ces used for amplification are as follows:
Itgav (forward: 5′-CGGGTCCCGAGGGAAGTTA-
3′; reverse: 5′-TGGATGAGCATTCACATTTGAG-3′)
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and Itgb8 (forward: 5′-AGTGAACACAATA-
GATGTGGCTC-3′; reverse: 5′-TTCCTGATCCACC
TGAAACAAAA-3′).

Statistical analysis

Two-tailed, paired or unpaired Student’s t tests
(for normally distributed data) or Mann–
Whitney U tests (for non-normally distrib-
uted data) was used for comparisons between
two groups. One-way analysis of variance
(ANOVA) test was used for comparisons be-
tween multiple groups. The two-sample
Kolmogorov–Smirnov test was used to com-
pare cumulative distributions. All statistical
tests were performed with GraphPad Prism
software, and p < 0.05 was considered sta-
tistically significant.
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