It’s a matter of expression.

For over 40 years, New England Biolabs has been developing and using recombinant protein technologies in *E. coli* for our own manufacturing processes.

Protein expression can be a very complex, multi-factorial process. Each protein requires a specific environment to correctly and efficiently achieve its secondary and tertiary structures. Proteins may also require post-translational modifications or insertion into a cellular membrane for proper function. Other proteins, once expressed, may be toxic to the host. Thus, no single solution exists for the successful production of all recombinant proteins, and a broad range of expression tools is often required to ensure the successful expression of your target protein.

Our NEBExpress™ portfolio of products include solutions for expression and purification of a wide range of proteins, and is supported by access to scientists with over 40 years of experience in developing and using recombinant protein technologies in *E. coli*. We use these solutions in our own research and manufacturing processes, and know that quality and performance are critical – all of our products are stringently tested so that you can be sure they will work optimally for your solution, just as we rely on them to work in ours.

Featured products include:

- **Cell-free expression systems** – express analytical amounts of protein in approximately two hours
- ***E. coli* expression and purification kits** – generate and purify high yields of recombinant proteins
- **Competent cells** – express a variety of proteins in *E. coli*, including difficult targets, proteins with multiple disulfide bonds and His-tagged proteins
- **Purification beads, columns and resins** – available for CBD-, MBP- and His-tagged proteins

Access our entire portfolio and request your sample at www.neb.com/ProteinExpression.
NEW Water Immersion Objectives

Gain the sensitivity to capture more phenotypic data at greater depths. Our high-content imagers and expert team are here to help your lab simplify imaging and analysis of complex, 3D assay workflows and fast-track discoveries.

Learn more at moleculardevices.com/water
The BBVA Foundation Frontiers of Knowledge Awards recognize and reward world-class research and artistic creation, prizes contributions of singular impact for their originality and significance. The name of the scheme is intended to denote not only research work that substantially enlarges the scope of our current knowledge – pushing forward the frontiers of the known world – but also the meeting and overlap of different disciplinary areas and the emergence of new fields.

The Frontiers of Knowledge Awards honor fundamental disciplinary or interdisciplinary advances across a broad expanse of the knowledge map of the 21st century.

The BBVA Foundation is assisted in the award process by the Spanish National Research Council (CSIC).

Categories

1/ Basic Sciences (Physics, Chemistry, Mathematics)
2/ Biology and Biomedicine
3/ Information and Communication Technologies
4/ Ecology and Conservation Biology
5/ Climate Change
6/ Economics, Finance and Management
7/ Humanities and Social Sciences
8/ Music and Opera

In Humanities and Social Sciences, the award will alternate annually between these two disciplinary domains, with this thirteenth edition dedicated to the Humanities.

Nomination

Nominations are invited from scientific or artistic societies and organizations, public or private R&D centers, university and hospital departments, schools of music, orchestras, and organizations working on or around the issue of climate change, as well as other institutions specified in the call conditions.

Entry submission

The nomination period concludes at 23:00 GMT on June 30, 2020.

www.frontiersofknowledgeawards-fbbva.es
The next generation Digital Patch Clamp Amplifier System. Combining high-speed, high-resolution digital processing, high-precision A/D circuitry, and integrated data acquisition and bundled SutterPatch® software, the dPatch system provides capabilities previously out of reach for the electrophysiologist. Available in either a single- or double-headstage configuration, the dPatch meets the requirements of today’s experiments and anticipates the demands of tomorrow’s.

- Single-channel and whole-cell patch clamp recordings
- Integrated data acquisition interface
- High bandwidth for fastest signal characterization
- Digital compensation circuitry for precision signal fidelity
- Quick and easy setup
- Bundled SutterPatch® software built on Igor Pro platform

For a detailed brochure, please call (800) 252-4910.
NEW!
Low-Noise Ultra-Fast Digital Patch Clamp Amplifier System

- Integrated data acquisition interface
- High bandwidth for fastest signal characterization
- Single-channel and whole-cell patch clamp recordings
- Digital compensation circuitry for precision and signal fidelity
- Quick and easy setup
- Bundled SutterPatch® software built on Igor Pro platform

dPatch®
The next generation Digital Patch Clamp Amplifier System. Combining high-speed, high-resolution digital processing, precision A/D circuitry, integrated data acquisition and bundled SutterPatch® software, the dPatch system provides capabilities previously out of reach for the electrophysiologist. Available in either a single- or double-headstage configuration, the dPatch meets the requirements of today’s experiments and anticipates the demands of tomorrow’s.

Argentina Eclipse
December 8-19, 2020
Explore the magnificence of Argentina, from the premiere city of Buenos Aires and historic La Plata to San Martin de los Andes, and the thundering wonder of Iguazu Falls. View the Total Solar Eclipse just north of San Martin de los Andes. $5,995 pp + air.

Easter Island
December 2-9, 2020
There are about one thousand 10 to 30-ft tall moais found on Easter Island, carved out of the volcanic rock. Our adventure in Easter Island will give you a great look at the heritage of this remarkable location with an excellent local guide. $2,995 pp share + air.

Total Solar Eclipse – Dec. 14, 2020
Diamond Ring photo courtesy David Morrison

For a detailed brochure, please call (800) 252-4910
All prices are per person twin share + air

AAAS Travels
Members and friends of AAAS are invited to join AAAS Travels on fascinating trips to all 7 continents!

AAAS
E-mail: AAASInfo@betchartexpeditions.com
www.betchartexpeditions.com

Betchart Expeditions Inc.
17050 Montebello Rd
Cupertino, California 95014

Unleash the impossible
Whatever projects you’re working on, from a simple test to life-sustaining medical breakthroughs, you can count on the unparalleled Sigma-Aldrich® portfolio along the way. With proven, reliable, cutting-edge lab and production materials, we are always expanding and perfecting our global portfolio. So we’ll be with you from day one to the day your impossible dream suddenly doesn’t seem so impossible. To find out more, visit: SigmaAldrich.com/UnleashTheImpossible

Low-Noise Ultra-Fast Digital Patch Clamp Amplifier System

dPatch®
The next generation Digital Patch Clamp Amplifier System. Combining high-speed, high-resolution digital processing, precision A/D circuitry, integrated data acquisition and bundled SutterPatch® software, the dPatch system provides capabilities previously out of reach for the electrophysiologist. Available in either a single- or double-headstage configuration, the dPatch meets the requirements of today’s experiments and anticipates the demands of tomorrow’s.

PHONE: +1.415.883.0128
FAX: +1.415.883.0572
EMAIL: INFO@SUTTER.COM
WWW: SUTTER.COM

Sigma-Aldrich.
Lab & Production Materials

Merck
Sigma, the Sigma logo and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Sigma-Aldrich is a registered trademark of Merck KGaA, Darmstadt, Germany. © 2020 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

The next generation Digital Patch Clamp Amplifier System. Combining high-speed, high-resolution digital processing, precision A/D circuitry, integrated data acquisition and bundled SutterPatch® software, the dPatch system provides capabilities previously out of reach for the electrophysiologist. Available in either a single- or double-headstage configuration, the dPatch meets the requirements of today’s experiments and anticipates the demands of tomorrow’s.

PHONE: +1.415.883.0128
FAX: +1.415.883.0572
EMAIL: INFO@SUTTER.COM
WWW: SUTTER.COM

Sigma-Aldrich.
Lab & Production Materials

Merck
Sigma, the Sigma logo and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Sigma-Aldrich is a registered trademark of Merck KGaA, Darmstadt, Germany. © 2020 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.
The BBVA Foundation Frontiers of Knowledge Awards recognize and reward world-class research and artistic creation, prizing contributions of singular impact for their originality and significance. The name of the scheme is intended to denote not only research work that substantially enlarges the scope of our current knowledge – pushing forward the frontiers of the known world – but also the meeting and overlap of different disciplinary areas and the emergence of new fields.

The Frontiers of Knowledge Awards honor fundamental disciplinary or interdisciplinary advances across a broad expanse of the knowledge map of the 21st century.

The BBVA Foundation is assisted in the award process by the Spanish National Research Council (CSIC).

Categories

1/ Basic Sciences (Physics, Chemistry, Mathematics)
2/ Biology and Biomedicine
3/ Information and Communication Technologies
4/ Ecology and Conservation Biology
5/ Climate Change
6/ Economics, Finance and Management
7/ Humanities and Social Sciences
8/ Music and Opera

In Humanities and Social Sciences, the award will alternate annually between these two disciplinary domains, with this thirteenth edition dedicated to the Humanities.

Nomination

Nominations are invited from scientific or artistic societies and organizations, public or private R&D centers, university and hospital departments, schools of music, orchestras, and organizations working on or around the issue of climate change, as well as other institutions specified in the call conditions.

Entry submission

The nomination period concludes at 23:00 GMT on June 30, 2020.

www.frontiersofknowledgeawards-fbbva.es
Democratizing cryo-EM: Broadening access to an expanding field

Cryo-electron microscopy (cryo-EM) yields atomic-level structures of megacomplexes and tiny compounds. How can your lab get access to this versatile method? By Chris Tachibana

For decades, says Bridget Carragher, cryo-EM was a “niche, hole-in-the-wall” field. But in 2017, cryo-EM passed nuclear magnetic resonance (NMR) spectroscopy for number of annual entries in the Protein Data Bank, the world’s sole repository for 3D structural data on proteins, nucleic acids, and large biological molecules. And now it’s gaining on the grandaddy of structural methods, X-ray crystallography.

Carragher leads a cryo-EM facility at the New York Structural Biology Center, which is supported by the U.S. National Institutes of Health (NIH) and the Simons Foundation. Two other NIH-funded centers are at Stanford University and Oregon Health & Science University (OHSU). “The trend everywhere is for national cryo-EM facilities,” says Poul Nissen, structural biologist at Aarhus University, which is the Danish national facility, together with the University of Copenhagen.

National centers serve a cryo-EM community that is rapidly expanding as software and hardware breakthroughs, especially in electron detectors, demonstrate how cryo-EM can advance basic research, drug development, and even solar-cell technology (1,2).

Crystallographic resolution — without crystals, but at a cost

Unlike X-ray crystallography, cryo-EM does not require crystallized samples. This eliminates a time-consuming step and allows atomic-level reconstructions of lumpy complexes and integral membrane proteins that have resisted crystallization. It can show conformational changes, such as ribosomes flexing their structure as they go through protein synthesis (3).

Cryo-EM works with unstained, aqueous samples. For single-particle analysis (SPA), its most common application, researchers drop samples onto a grid that is flashcooled by being plunged into liquid ethane. This freezing—or rather vitrifying—is so rapid that sample molecules are immobilized with their structure preserved and without ice crystals that interfere with transmission electron microscopy (TEM). Researchers then take thousands of TEM images by beaming electrons through the sample. Molecules caught in random orientations scatter the electrons, creating patterns used to generate 3D models.

Craig Yoshioka, codirector of the NIH cryo-EM center at OHSU, points out a promising development: Crystallographers who had truncated or mutated proteins to coax them into crystals can now study full-length wildtype proteins using cryo-EM. “This should better represent targets in their native states,” he says, “including with posttranslational modifications like glycosylation.”

Currently, SPA works best with large samples around 200 kDa, so researchers with smaller proteins might turn to microcrystal electron diffraction (microED), a cryo-EM method with a larger size range. Another issue with SPA is that it uses cell extracts; but inside cells, says University of California, San Diego biophysicist Elizabeth Villa, “proteins aren’t floating in water. They’re packed with other components, interacting with them, or forming networks that break up during extraction.” Villa uses cryo-electron tomography (cryo-ET), which images sections of cells or even tissues, to visualize components in situ.

And cryo-EM has an overarching drawback: cost. Top-of-the-line, 300-kiloelectron volt (keV) cryo-EM machines are around USD 5–7 million, with added costs for space, service contracts, and experienced staff. Pharmaceutical companies may have in-house facilities or use a company like Nanolmaging Services. Most cryo-EM clients are from pharma or biotech, says Carragher, a cofounder. Example projects include analyzing vaccines, antibodies, and drug targets. The company is rare among cryo-EM contractors in owning its own equipment, with others often using instruments at partner institutes.

Major research institutions also invest in cryo-EM facilities, but smaller universities can’t afford them. However, scientists including Gabriel Lander’s group at Scripps Research have revealed single-angstrom (Å) structures of proteins using less-powerful 100-keV or 200-keV microscopes. cont.>
(4) that cost USD 1–2 million. These results encourage scientists who call for
democratizing cryo-EM with more affordable, workhorse instruments (5).

Community service
Cryo-EM access should increase thanks to the new NIH centers, which have
cutting-edge equipment and a focus on service and training—center personnel
are not allowed to be coauthors on users’ publications. At full capacity, the
OHSU site will be collecting data 24/7 on 200–300 active projects at a time and
training 50–plus visiting scientists a year, Yoshioka estimates. He expects up to
hundreds of reconstructions per year per center.

And services are free. “You write a proposal,” Carragher says, “and if it’s
accepted based on criteria, such as scientific merit, feasibility, and need, you
get cryo-EM time.” This model is similar to national synchrotron facilities,
and many, such as the United Kingdom’s Electron Bio-Imaging Centre at the
Diamond Light Source (Oxfordshire) and the Brazilian Nanotechnology
National Laboratory (LNNano) of the Brazilian Center for Research in Energy
and Materials (Campinas), are located close to synchrotrons.

LNNano is the only cryo-EM facility in Latin America, and is supported by
government and State of São Paulo funding. Industrial clients are charged for
services, but service and training are free for academic researchers after project
evaluation, says LNNano researcher Rodrigo Portugal.

LNNano Senior Scientist Marin van Heel says cryo-EM is a powerful tool for
structure-based drug and vaccine design, so it is essential in the region because
of “big needs, like in neglected diseases such as Zika.” SPA research is underway
at LNNano with collaborators in Brazil, Peru, Uruguay, and Argentina.

Besides cost, the major burden at LNNano facilities is brain drain. Despite
holding multiple workshops and the annual Brazil School for Single Particle
Cryo-EM, “people get headhunted away to a center or pharma company in
another country,” van Heel says.

“It’s THE issue”
Cryo-EM software and hardware have “advanced amazingly,” Yoshioka
says, “but it can still be difficult to reliably take any protein from a gene
to a structure.” Cryo-EM doesn’t require large crystals, but sample purity, heterogeneity, and concentration are still important.

“Sample prep isn’t an issue,” says Carragher, “it’s THE issue.” During
vitrification, “particles glue themselves together, stick to the
air-water interface, adopt sulky
conformations, or fall apart.” Commercial automated systems make sample
preparation more reliable. However, a downstream challenge is caused by
terabytes of data that require dedicated workstations.

Digital developments
Cryo-EM users uniformly praise software groups for advancing data analysis
and structure resolution. Open-source software, such as RELION from Sjors
Scheres at the UK’s Medical Research Council Laboratory of Molecular Biology,
and work by others including Niko Grigorieff at Janelia Research Campus and
the University of Massachusetts, have been instrumental to the field, says
Yoshioka. An up-and-coming computational advance, he notes, is real-time
processing and reconstruction as data are collected.

That’s what cryoSPARC Live does. Currently in beta testing, the software
comes from University of Toronto spinout Structura Biotechnology, run by
brother-and-sister team Ali Punjani and Saara Virani. CryoSPARC Live adds
to the cryoSPARC package of SPA tools, including 2D image curation and 3D
reconstruction without prior structural knowledge.

CryoSPARC Live, Virani says, shows initial images after a few minutes,
6-Å to 8-Å 3D structures in about an hour, and refined high-resolution
structures a few hours later. Researchers can make real-time adjustments, such
as moving the sample to focus on the best areas and deciding how much data
to collect, saving time and money, she says. With demand for cryo-EM growing
rapidly, the field is wrestling with commercialization issues. Punjani explains
that cryoSPARC is free for academic users, while commercial clients such as
pharma companies must buy a license.

A computational angle on cryo-EM democratization, Punjani says, is to
modify algorithms to get better images from lower-end microscopes. Also,
cloud-hosted computation would let labs rent processing time as needed
instead of investing in dedicated hardware.

Full tilt on innovations
“Single-particle will be the bread-and-butter method for high-resolution
cryo-EM for a while,” Yoshioka says. Advances in other areas extend the size
range for resolving structures and allow views of the cell interior.

Getting high-resolution images of proteins smaller than 100 kDa pushes the
limit of current SPA. MicroED, developed by Tamir Gonen’s group, achieves
atomic resolution for size ranges of complexes larger than 200 kDa to organic
molecules under 10 carbon atoms. MicroED uses crystals one-billionth the size
needed for X-ray crystallography, explains Gonen, now at the University of
California, Los Angeles (UCLA). In microED, vitrification protects samples
so that diffraction patterns are generated by rotating a single microcrystal
through an electron beam, capturing all angles for 3D reconstruction of its
molecules.

Gonen used microED to visualize structural changes in a channel as a sodium
ion passed through. “Because we used crystals containing only about 1,000
units,” he says, “we could tease out smaller differences and capture a transition
state” (6).

Medicinal chemists, forensic scientists, and drug developers are excited
about the “powder-to-structure” application of microED. Gonen’s group and
others published methods for 30-min identification of small molecules such as
ibuprofen or biotin by structure, including in mixtures (7).

Gonen has worked with Thermo Fisher Scientific to develop relatively
easy-to-use microED hardware and software. “You don’t need to know much
now to get a sample into a ‘scope and collect data. It could make microED more
available to the community,” he says. Steve Reyntjens, Thermo Fisher’s director
of product marketing, says the microED package is easy to add as an optional
item on new microscopes or as a retrofit to existing instruments.

The David Geffen School of Medicine at UCLA has a microED center that
works with academic and industry scientists and offers microED training,
including at an annual summit coming up in October 2020 (8).

Cryo-ET reveals cellular contents not as they appear in textbooks or
videos “with empty space, a particle, then empty space,” says
Villa. It shows cells jam-packed with molecules.
Researchers using specialized TEM grids for growing cells before inducing a change, such as stimulating neurons or exposing human cells to medicines. Villa says, "to see at high resolution what happened at the point you did something to the cell."

Sample preparation for cryo-ET is low throughput, but a variation of CLEM with multiplexed fluorescent markers, developed by John Briggs’ group at the European Molecular Biology Laboratory in Germany, could more quickly identify cells for cryo-ET. Cryo-ET will allow observation of molecules in their native environment and in whole tissues, such as molecular views of “the connectome” of neuron-to-neuron interactions, Nissen says. The Thermo Fisher second-generation FIB instrument, notes Reyntjens, has cryo-liftoff capability for manipulating miniscule samples cut from vitrified tissue thinned to 100 nm–150 nm and transferred to a cryo-EM instrument for tomography.

Nikhil will soon launch national cryo-ET centers. The current cryo-EM centers, Carragher explains, collect tomograms if users have samples ready for cryo-ET. The national centers will provide access to equipment, plus assistance with tricky cryo-ET specimen preparation.

In addition to developments like CLEM, structural analysis that combines cryo-EM with data from multiple sources is on the rise. “Increasingly, people use crystallography, NMR, CLEM, mass spec—everything out there—to get an answer,” Carragher says. “But if we want these tools in everyone’s toolkit, they need to be more accessible.”

New ambitions

Along with solving the access problem, Nissen observes, the field should shift its perspective from focusing only on structures to “asking what the structure is doing in the cell in its native state. Getting label-free, time-resolved structures in natural contexts is the ultimate goal and also a new level of ambition to instill in students and postdocs.”

Nissen and others predict increasing industry use of cryo-EM for developing antibody therapeutics, small molecule drugs, and diagnostics. “We should also work with the medical community on unmet diagnostic needs,” he says, “where histology doesn’t show good differences between disease and healthy tissue. We might find molecular differences in tissues [by also] using cryo-ET.”

van Heel, who helped develop cryo-EM and has watched its use grow, says about working in the field, “It’s challenging at the moment, but it’s a great time to be alive. There’s no time for vacation.”

References

Chris Tachibana is a freelance writer who specializes in life sciences.
Cryo-EM Pucks
The Cryo-EM Puck basic lab starter kit is ideal for those just starting to use cryo-electron microscopy (cryo-EM) and for smaller projects or labs. The kit helps with organizing, tracking, and shipping your samples on grids for single-particle analysis and other cryo-EM applications. It includes 10 MiTeGen 2nd Generation Cryo-EM Pucks; one cane for storing your pucks; one cane for shipping them; one grasping tong for handling them safely and securely; and Cryo-EM Puck barcoding and serialization for organizing and tracking your samples. Our kits can be customized as needed.

MiTeGen
For info: 877-648-3436
www.mitegen.com

Imaging Filter
The BioContinuum imaging filter combines high-performance post-column energy filtration with direct detection technology. Because the filter is ideally suited for low-dose imaging applications, researchers can maximize their cryo-EM and cryo-electron tomography (cryo-ET) capabilities to gain further insight into system function and disease progression at the molecular level. The filter offers a 24-megapixel (5,760 x 4,092) field of view and works at 1,500 full frames per second. The BioContinuum comes with an optional, inline, GPU-based motion correction that saves researchers the need to save terabytes of raw frames.

Gatan
For info: 925-463-0200
www.gatan.com

Cryo-Electron Microscope
JEOL announces the CRYO ARM 300 Field Emission Cryo-Electron Microscope for automatic, unattended acquisition of image data for single-particle analysis. The system is composed of an autoloading specimen stage (of up to four grids) cooled to liquid nitrogen temperatures and a cryo-storage device for long-term storage of up to 12 frozen-hydrated specimens. A cold field-emission gun produces a high-brightness electron beam with a very small energy spread, thus offering high temporal coherency. Equipped with an improved in-column energy filter (Omega filter), the CRYO ARM 300 acquires energy-filtered images and energy-loss spectra. The CRYO ARM 300 incorporates JEOL Automated Data Acquisition System (JADAS) automated software for single-particle analysis workflows. The hole-free phase plate consists of a thin, continuous carbon film placed in the back focal plane of the objective lens, providing substantial improvement in image contrast of frozen-hydrated specimens.

JEOL
For info: 978-535-5900
www.jeolusa.com

Cryo-EM Grid Box
The SWISSCI Cryo-EM Grid Box is made from a special polymer formulation that ensures no static charging occurs at cryogenic temperatures. It has four diamond-shaped slot positions, each having its own number indicated on the side. No special tools are required, since the lid is rotated with standard laboratory tweezers. Individually numbered Pressure Adhesive Cryo Labels are supplied with the boxes, giving the consumer a convenient alternative to marking up each box themselves. The Cryo-EM Grid Box fits for all common cryo-EM sample mounting and storage devices. Its low cost enables single use, giving each stored sample a unique identification number and preventing sample mix-ups.

SWISSCI
For info: +41-(0)-41756-0037
www.swissci.com/cryo-em-grid-box
Advanced Devices & Instrumentation is an online-only open access journal published in affiliation with Beijing Institute of Aerospace Control Devices (BIACD) and distributed by the American Association for the Advancement of Science (AAAS). Advanced Devices & Instrumentation aims to publish the latest investigations on novel ideas, methods, and techniques for the development and manufacture of advanced devices and instrumentation, as well as novel and practical solutions for existing applications.

Submit your research to Advanced Devices & Instrumentation today!
Learn more at spj.sciencemag.org/adi

The Science Partner Journals (SPJ) program was established by the American Association for the Advancement of Science (AAAS), the non-profit publisher of the Science family of journals. The SPJ program features high quality, online-only, editorially independent open-access publications produced in collaboration with international research institutions, foundations, funders and societies. Through these collaborations, AAAS expands its efforts to communicate science broadly and for the benefit of all people by providing a top-tier international research organization with the technology, visibility, and publishing expertise that AAAS is uniquely positioned to offer as the world’s largest. Visit us at spj.sciencemag.org

@SPJournals @SPJournals

ARTICLE PROCESSING CHARGES WAIVED UNTIL 2023
REDEIGNED WITH ALL OF US IN MIND

Introducing the Stericup® E and Steritop® E sterile filtration devices—evolved with an eco-conscience.

This progressive rethinking of filter design reduces your lab’s environmental impact by eliminating the need for a receiver funnel, significantly decreasing packaging and biohazardous waste.

Expect the same faultless filtration you trust from Stericup® devices—and leave a smaller footprint.

Up to 48% Reduced Plastics

Up to 69% Reduced Packaging

Stericup® E family of sterile filters thread directly onto virtually any media bottle

SigmaAldrich.com/Stericup-E

*Up to 48% plastic reduction and 69% packaging reduction (depending on receiver volume), derived from comparison to traditional Stericup® sterile filters.

© 2019 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved. MilliporeSigma, the vibrant M, Millipore and Stericup are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

2019 - 24573 08/2019

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada.

Millipore®

Preparation, Separation, Filtration & Monitoring Products
REDESIGNED WITH ALL OF US IN MIND

Introducing the Stericup® E and Steritop® E sterile filtration devices—evolved with an eco-conscience.

This progressive rethinking of filter design reduces your lab’s environmental impact by eliminating the need for a receiver funnel, significantly decreasing packaging and biohazardous waste.

Expect the same faultless filtration you trust from Stericup® devices—and leave a smaller footprint.

SigmaAldrich.com/Stericup-E

*Up to 48% plastic reduction and 69% packaging reduction (depending on receiver volume), derived from comparison to traditional Stericup® sterile filters.

© 2019 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved. Merck, the vibrant M, Millipore and Stericup are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

2019-24573 08/2019

Millipore®

Preparation, Separation, Filtration & Monitoring Products