
RESEARCH ARTICLE
◥

HUMAN GENOMICS

The GTEx Consortium atlas of genetic regulatory
effects across human tissues
The GTEx Consortium*

The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects on
the transcriptome across human tissues and to link these regulatory mechanisms to trait and disease
associations. Here, we present analyses of the version 8 data, examining 15,201 RNA-sequencing
samples from 49 tissues of 838 postmortem donors. We comprehensively characterize genetic
associations for gene expression and splicing in cis and trans, showing that regulatory associations are
found for almost all genes, and describe the underlying molecular mechanisms and their contribution
to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large diversity of tissues,
we provide insights into the tissue specificity of genetic effects and show that cell type composition is a
key factor in understanding gene regulatory mechanisms in human tissues.

T
he characterization and interpretation of
the function of the millions of genetic
variants across the human genome re-
main a pressing need in human genetics.
Understanding the effects of genetic var-

iation is essential for identifying the molecular
mechanisms of genetic risk for complex traits
and diseases, which are mainly driven by non-
coding loci with largely uncharacterized regu-
latory functions. To address this challenge,
several projects have built comprehensive
annotations of genome function across tis-
sues and cell types (1, 2) andmapped the effects
of regulatory variation across large numbers of
individuals, primarily from whole blood and
blood cell types (3–5). The Genotype-Tissue
Expression (GTEx) project provides an essen-
tial intersection where variant function can be
studied across a wide range of both tissues
and individuals.
The GTEx project was launched in 2010 with

the aim of building a catalog of genetic effects
on gene expression across a large number of
human tissues to elucidate themolecularmech-
anisms of genetic associations with complex
diseases and traits and to improve our under-
standing of regulatory genetic variation (6).
The project set out to collect biospecimens
from ~50 tissues from up to ~1000 post-
mortem donors and to create standards
and protocols for optimizing postmortem
tissue collection and donor recruitment (7, 8),

version 8 (v8) data release from the GTEx Con-
sortium. We provide a catalog of genetic regu-
latory variants affecting gene expression and
splicing in cis and trans across 49 tissues
and describe patterns and mechanisms of
tissue and cell type specificity of genetic reg-
ulatory effects. Through integration of GTEx
data with genome-wide association studies
(GWASs), we characterize mechanisms of how
genetic effects on the transcriptome mediate
complex trait associations.

Quantitative trait locus (QTL) discovery

The GTEx v8 dataset, after quality control (11),
consists of 838 donors and 17,382 samples
from 52 tissues and two cell lines. In the
analysis of this study, we used 49 tissues or
cell lines that had at least 70 individuals for
which both RNA sequencing (RNA-seq) and
genotype data from whole-genome sequenc-
ing (WGS) were available, for a total of 15,201
samples from 838 donors (Fig. 1A and figs. S1
and S2). Of the 838 donors, 715 (85.3%) were
European American, 103 (12.3%) African Ameri-
can, and 12 (1.4%) AsianAmerican, with 16 (1.9%)
reporting Hispanic or Latino ethnicity; 557
(66.4%) donors were male and 281 (33.5%)
female (fig. S1). WGS was performed for each
donor to a median depth of 32×, resulting in
the detection of 43,066,422 single-nucleotide
variants after quality control and phasing
[10,008,325withminor allele frequency (MAF)≥
0.01] and 3,459,870 small indels (762,535 with
MAF ≥ 0.01) (fig. S3 and table S1) (11). The
mRNA of each of the tissue samples was se-
quenced to a median depth of 82.6 million
reads, and alignment, quantification, and qual-
ity control were performed as described in (11)
(figs. S4 to S6).
The resulting data provide a broad survey

of individual- and tissue-specific gene expres-
sion, enabling a comprehensive view of the
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biospecimen processing (7), and data sharing
(www.gtexportal.org).
Following the GTEx pilot (9) and midstage

results (10), we present a final analysis of the
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impact of genetic variation on gene regulation
(Fig. 1B). We mapped genetic loci that affect
the expression (eQTL) or splicing (sQTL) of
protein-coding and long intergenic noncoding
RNA (lincRNA) genes, both in cis and trans.
Genes with an eQTL or sQTL are called eGenes
and sGenes, respectively, and the correspond-
ing significant variants are called eVariants
and sVariants, respectively.
Across all tissues, we discovered cis-eQTLs

[5% false discovery rate (FDR) per tissue (11),
with 1% FDR results shown in fig. S7] for
18,262 protein-coding and 5006 lincRNA genes
[23,268 genes with a cis-eQTL (i.e., cis-eGenes)
corresponding to 94.7% of all protein-coding
and 67.3% of all lincRNA genes detected in

at least one tissue], with a total of 4,278,636
genetic variants (43% of all variants with
MAF ≥ 0.01) that were significant in at least
one tissue (cis-eVariants) (Fig. 2A, figs. S7 and
S8, and table S2). The discovered eQTLs had a
high replication rate in external datasets (figs.
S12 and S13). Cis-eQTLs for all long noncoding
RNAs (lncRNAs), which include lincRNAs and
other types, are characterized in (12). The genes
lacking a cis-eQTL were enriched for those
lacking expression in the tissues analyzed
by GTEx, including genes involved in early
development (fig. S9). While most of the
discovered cis-eQTLs had small effect sizes
measured as allelic fold change (aFC), across
tissues an average of 22% of cis-eQTLs had a

greater than twofold effect on gene expres-
sion (fig. S14). We mapped sQTLs in cis with
intron excision ratios from LeafCutter (11, 13)
and discovered 12,828 (66.5%) protein-coding
and 1600 (21.5%) lincRNA genes (14,424 total)
with a cis-sQTL (5% FDR per tissue) in at least
one tissue (cis-sVariants) (Fig. 2A and table
S2; with 1% FDR results shown in fig. S7). As
expected (10), cis-QTL discovery was highly
correlated with the sample size for each tissue
[Spearman’s rank correlation coefficient (r) =
0.95 for cis-eQTLs and 0.92 for cis-sQTLs]. The
increased cis-eQTL discovery in larger tissues
is primarily driven by additional power to dis-
cover small effects, with discovery of cis-eGenes
with a greater than twofold effect saturating
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Fig. 1. Sample and data types in the GTEx v8 study. (A) Illustration of the
54 tissue types examined (including 11 distinct brain regions and two cell lines),
with sample numbers from genotyped donors in parentheses and color coding
indicated in the adjacent circles. Tissues with 70 or more samples were included

in QTL analyses. (B) Illustration of the core data types used throughout the
study. Gene expression and splicing were quantified from bulk RNA-seq of
heterogeneous tissue samples, and local and distal genetic effects (cis-QTLs and
trans-QTLs, respectively) were quantified across individuals for each tissue.
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at ~1500 genes in tissues with >200 samples
(fig. S14).
Previous studies have shown widespread

allelic heterogeneity of gene expression in cis,
that is, multiple independent causal eQTLs
per gene (4, 14, 15). Wemapped independent
cis-eQTLs and cis-sQTLs using stepwise regres-
sion, where the 5% FDR threshold for sig-
nificance was defined by the single cis-QTL
mapping (10). We observed widespread allelic
heterogeneity, with up to 50%of eGenes having
more than one independent cis-eQTL in the
tissues with the largest sample sizes (Fig. 2B
and fig. S10). Our analysis captured a lower
rate of allelic heterogeneity for cis-sQTLs, which
could be a result of both underlying biology
and lower power in cis-sQTL mapping (fig.
S10). These results highlight gains in cis-eQTL
mapping with increasing sample sizes, even
when the discovery of new eGenes in specific
tissues starts to saturate.
Interchromosomal trans-eQTL mapping

yielded 143 trans-eGenes (121 protein-coding
and 22 lincRNA at 5% FDR assessed at the
gene level, separately for each gene type), after
controlling for false positives due to read
misalignment (11, 16) (table S13). The number
of trans-eGenes discovered per tissue is cor-
related with sample size (Spearman’s r = 0.68)

and to the number of cis-eQTLs (Spearman’s
r = 0.77), with outlier tissues such as testis
contributing disproportionately to both cis and
trans (Fig. 2C).We identified a total of 49 trans-
eGenes in testis, 47 of which were found in no
other tissue even at FDR 50%. Greater than
twofold effect sizes on trans-eGene expression
were observed for 19%of trans-eQTLs (fig. S14).
Trans-sQTL mapping yielded 29 trans-sGenes
(5% FDR per tissue), including a replication of
a previously described trans-sQTL (3) and visual
support of the association pattern in several loci
(11) (fig. S11 and table S14). These results suggest
that while trans-sQTL mapping is challenging,
we candiscover robust genetic effects on splicing
in trans.
We produced allelic expression (AE) data

using two complementary approaches (11). In
addition to the conventional AE data for each
heterozygous genotype, we produced AE data
by haplotype, integrating data frommultiple
heterozygous sites in the same gene, yielding
153million gene-levelmeasurements (≥8 reads)
across all samples (17). Allelic expression re-
flects differential regulation of the two haplo-
types in individuals that are heterozygous for a
regulatory variant in cis; indeed, cis-eQTL effect
size is strongly correlated with allelic expres-
sion (median Spearman’s r = 0.82) (10). We

hypothesized that cis-sQTLs could also par-
tially contribute to allelic imbalance, even if
only for parts of transcripts. However, there
is drastically less signal of increased allelic
imbalance among individuals heterozygous
for cis-sQTLs (median Spearman’s r = −0.05)
(fig. S15), which indicates that AE data primarily
capture cis-eQTL effects and that genetic splic-
ing variation in cis is not strongly reflected in
gene-level AE data.

Genetic regulatory effects across populations
and sexes

Variability in human traits and diseases be-
tween sexes andpopulation groups likely partially
results from differences in genetic effects
(18–20). To study whether genetic regulatory
variantsmanifest such variability, we analyzed
variable cis-eQTL effects between males and
females, as well as between individuals of
European ancestry and those of African an-
cestry. Because external replication datasets
are sparse, we developed an AE approach for
validation with an orthogonal data type from
the same samples (17): Allelic imbalance in in-
dividuals heterozygous for the cis-eQTL allows
individual-level quantification of the cis-eQTL
effect size (21) and can be correlated with the
interaction terms used in cis-eQTL analysis
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Fig. 2. QTL discovery. (A) The number of genes with a cis-eQTL (eGenes) or
cis-sQTL (sGenes) per tissue, as a function of sample size. See Fig. 1A for the
legend of tissue colors. (B) Allelic heterogeneity of cis-eQTLs depicted as
proportion of eGenes with one or more independent cis-eQTLs (blue stacked
bars; left y axis) and as a mean number of cis-eQTLs per gene (red dots; right
y axis). The tissues are ordered by sample size. (C) The number of genes

with a trans-eQTL as a function of the number of cis-eGenes. (D) Sex-biased
cis-eQTL for AURKA in skeletal muscle, where rs2273535-T is associated with
increased AURKA expression in males (P = 9.02 × 10−27) but not in females
(P = 0.75). (E) Population-biased cis-eQTL for SLC44A5 in esophagus mucosa
[aFC = −2.85 and −4.82 and in African Americans (AA) and European Americans
(EA), respectively; permutation P value = 1.2 × 10−3]. TPM, transcripts per million.
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to validate modifier effects of the cis-eQTL
association (fig. S16).
To characterize sex-differentiated genetic ef-

fects on gene expression in GTEx tissues, we
mapped sex-biased cis-eQTLs (sb-eQTLs). Ana-
lyzing the set of all conditionally independent
cis-eQTLs, we identified eQTLs with signifi-
cantly different effects between sexes by fitting
a linear regression model and testing for a
significant genotype-by-sex (G×S) interaction
(11). Across the 44 GTEx tissues shared be-
tween sexes, we identified 369 sb-eQTLs (FDR
≤ 25%), characterized further in (22). Sex-biased
eQTL discovery had a modest correlation with
tissue sample size (Spearman’s r = 0.39, P =
0.03), with most sb-eQTLs discovered in breast
but others also discovered in muscle, skin, and
adipose tissues.
In some cases, the cis-eQTL signal—identified

with males and females combined—seems to
be driven exclusively by one sex. For example,
the cis-eQTL association of rs2273535 with the
gene AURKA in skeletal muscle (cis-eQTL P =
6.92 × 1024) is correlated with sex (PG×S =
9.28 × 10−12, Storey qG×S = 1.07 × 10−7, AE
validation P = 1.15 × 10−11) and present only
in males (Fig. 2D and fig. S17). AURKA is a
member of the serine and threonine kinase

family involved in mitotic chromosomal seg-
regation that has beenwidely studied as a risk
factor in several cancers (23–26) and has re-
cently been shown to be involved in muscle
differentiation (27).
We also characterized population-biased cis-

eQTLs (pb-eQTLs), where a variant’s molecu-
lar effect on gene expression differs between
individuals of European and African ancestry,
controlling for differences in allele frequency,
linkage disequilibrium (LD), and covariates
(11). Analyzing 31 tissues with sample sizes
>20 in both populations, we mapped genes
with a different eQTL effect size measured
by aFC. After applying stringent filters to
remove differences potentially explained by
LD or other artifacts (fig. S18A), we identified
178 pb-eQTLs for 141 eGenes (FDR ≤ 25%) that
show amoderate degree of validation in allele-
specific expression data (fig. S18, C and D, and
table S10).
While some of the pb-eQTL effects are

tissue specific, there are also effects that are
shared across most tissues (fig. S18E). Figure
2E shows an example of a pb-eQTL for the
SLC44A5 gene involved in transport of sugars
and amino acids, which is expressed at diffe-
rent levels in the epidermis of lighter skin and

darker skin (reconstructed in vitro) (28, 29). In
Europeans, the derived allele of rs4606268
decreases expression of the gene in esophagus
mucosa (aFC = −4.82), but this effect is sig-
nificantly lower in African Americans (aFC =
−2.85, permutation P value = 1.2 × 10−3, AE
validation P = 0.002) (fig. S18C).
Altogether, despite the relaxed FDR, we dis-

covered only a few hundred sex- or population-
biased cis-eQTLs out of tens of thousands of
cis-eQTLs in GTEx, which indicates that there
are few regulatory variants with major modi-
fier effects and that these associations con-
tinue to be challenging to identify without a
much larger sample size. However, the dis-
covered effects can provide insights into sex-
or population-specific regulatory effects on
gene expression. Importantly, factors corre-
lated with sex or population—for example, cell
type composition or environmental exposures—
may contribute to sex- or population-biased
cis-eQTLs. These effects are described in de-
tail in (22).

Fine-mapping

A major challenge of all genetic association
studies is to distinguish the causal variants from
their LD proxies. We applied three different
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Fig. 3. Fine-mapping of cis-eQTLs. (A) Number
of eGenes per tissue with variants fine-mapped
with >0.5 posterior probability of causality,
using three methods. The overall number of
eGenes with at least one fine-mapped eVariant
increases with sample size for all methods.
However, this increase is in part driven by
better statistical power to detect small effect
size cis-eQTLs (aFC ≤ 1 in log2 scale; see also
fig. S14) with larger sample sizes, and the
proportion of well fine-mapped eGenes with
small effect sizes increases more modestly
with sample size (bottom versus top panels),
indicating that such cis-eQTLs are generally
more difficult to fine-map. (B) Enrichment of
variants among experimentally validated
regulatory variants, shown for the cis-eVariant
with the best P value (top eVariant), and
those with posterior probability of causality
>0.8 according to each of the three methods
individually or all of them (consensus). Error
bars: 95% confidence interval (CI). (C) The
cis-eQTL signal for CBX8 is fine-mapped
to a credible set of three variants (red and
purple diamonds), of which rs9896202
(purple diamond) overlaps a large number of
transcription factor binding sites in ENCODE
chromatin immunoprecipitation sequencing
(ChIP-seq) data and disrupts the binding motif
of EGR1. (D) The potential role of EGR1 binding
driving this cis-eQTL is further supported by
correlation between EGR1 expression and the
CBX8 cis-eQTL effect size across tissues.
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statistical fine-mapping methods—CaVEMaN
(30), CAVIAR (31), and dap-g (32)—to infer likely
causal variants of cis-eQTLs in each tissue (Fig.
3A) (11). For many cis-eQTLs, the causal variant
can be mapped with a high probability to a
handful of candidates. The 90% credible set
for each cis-eQTL consists of variants that in-
clude the causal variant with 90% probability;
using dap-g, we identified a median of six var-
iants in the 90% credible set for each cis-eQTL
(fig. S19). Furthermore, 9.3% of the cis-eQTLs
have a variant with a posterior probability
>0.8 according to dap-g, indicating a single
likely causal variant for those cis-eQTLs. We
defined a consensus set of 24,740 cis-eQTLs
across all tissues (7709 unique variants), for

which the posterior probability was >0.8
across all three methods (fig. S20). Fine-
mapped variants were significantly more
enriched among experimentally validated
causal variants from MPRA (33) and SuRE
(34) compared with the lead eVariant across
all eGenes (Fig. 3B). The highest enrichment
was observed for the consensus set, although
with overlapping confidence intervals (Fig. 3B).
This demonstrates how careful fine-mapping
facilitates the identification of likely causal
regulatory variants.
Knowing the likely causal variant enables

greater insights into the molecular mechanisms
of individual eQTLs, including the mechanisms
of their tissue-specific effects. Figure 3C shows

an example of an eQTL for the gene CBX8 that
colocalizes with breast cancer risk and birth
weight (posterior probability = 0.68 for both
in lung). One of the three variants in the
confident set overlaps the binding site and
disrupts the motif of the transcription factor
EGR1 (1) (fig. S21). The role of EGR1 as an
upstream driver of this eQTL is further sup-
ported by a cross-tissue correlation of the ef-
fect size of the eQTL and the expression level
of EGR1 (Spearman’s r = −0.69) (Fig. 3D).

Functional mechanisms of QTL associations

Quantitative trait data from multiple molecu-
lar phenotypes, integrated with the regulatory
annotation of the genome (table S3), offer a
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Fig. 4. Functional mechanisms of genetic regulatory effects. QTL enrichment
in functional annotations for (A) cis-eQTLs and cis-sQTLs and for (B) trans-eQTLs.
cis-QTL enrichment is shown as mean ± SD across tissues; trans-eQTL enrichment
as 95% CI. UTR, untranslated region. (C) Enrichment of lead trans-eVariants
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significant enrichment, P < 10−21. (D) Proportion of trans-eQTLs that are significant
cis-eQTLs or mediated by cis-eQTLs. (E) Trans associations of cis-mediating
genes identified through colocalization (PP4 > 0.8 and nominal association with
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powerful way to understand the molecular
mechanisms and phenotypic consequences of
genetic regulatory effects. As expected, cis-eQTLs
and cis-sQTLs are enriched in functional ele-
ments of the genome (Fig. 4A). Although the
strongest enrichments are driven by variant clas-
ses that lead to splicing changes or nonsense-
mediated decay, these account for relatively
few variants. Cis-sQTLs are enriched almost
entirely in transcribed regions, whereas cis-
eQTLs are enriched in both transcribed re-
gions and transcriptional regulatory elements.
Previous studies (4, 35) have indicated that cis-
eQTL and cis-sQTL effects on the same gene
are typically driven by different genetic variants.
This observation is corroborated by the GTEx
v8 data, where the overlap of cis-eQTL cred-
ible sets of likely causal variants, fromCAVIAR
analysis, have only a 12% overlap with cis-sQTL
credible sets (fig. S22). Functional enrichment
of overlapping and nonoverlapping cis-eQTLs

and cis-sQTLs, using stringent LD filtering,
showed that the patterns characteristic for
each type—such as enrichment of cis-eQTLs
in enhancers and cis-sQTLs in splice sites—are
even stronger for distinct loci (fig. S22).
We hypothesized that eVariants and their

target eGenes in cis aremore likely to be in the
same topologically associated domains (TADs)
that allow chromatin interactions betweenmore
distant regulatory regions and target gene
promoters (36). To test this supposition, we
analyzed TAD data from ENCODE (1) and
cis-eQTLs from matching GTEx tissues (table
S3). Compared to matching random variant-
gene pairs and controlling for distance from
the transcription start site, cis-eVariant and
cis-eGene pairs were significantly enriched for
being in the same TAD [median odds ratio
(OR) 4.55; all P < 10−12] (fig. S23).
Trans-eQTLs are enriched in regulatory an-

notations that suggest both pre- and post-

transcriptional mechanisms (Fig. 4B). Unlike
cis-eQTLs, trans-eQTLs are enriched in CTCF
binding sites, suggesting that disruption of
CTCF binding may underlie distal genetic
regulatory effects, potentially via its effect on
interchromosomal chromatin interactions (36).
Trans-eQTLs are also partially driven by cis-
eQTLs (37, 38), with a significant enrichment of
lead trans-eVariants among cis-eVariants in the
same tissue (5.9×; two-sided Fisher’s exact test,
P = 5.03 × 10−22) (Fig. 4C). A lack of analogous
enrichment suggests that cis-sQTLs are less
important contributors to trans-eQTLs (P =
0.064), and trans-sVariants had no significant
enrichment of either cis-eQTLs (P = 0.051) or
cis-sQTLs (P = 0.53). A further demonstra-
tion of the important contribution of cis-eQTLs
to trans-eQTLs is that, on the basis of media-
tion analysis, 77% of lead trans-eVariants that
are also cis-eVariants (corresponding to 31.6%
of all lead trans-eVariants) appear to act through
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Fig. 5. Regulatory mechanisms of GWAS loci. (A) GWAS enrichment of
cis-eQTLs, cis-sQTLs, and trans-eQTLs measured with different approaches:
enrichment calculated from GWAS summary statistics of the most
significant cis-QTL per eGene or sGene with QTLEnrich and LD score
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enrichment with all GWAS catalog variants, and LD score regression with
fine-mapped cis-QTLs in the 95% credible set (S-LDSC credible set)
and using posterior probability of causality as a continuous annotation
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(ENLOC) and association (PrediXcan), aggregated across tissues.
(C) Concordance of mediated effects among independent cis-eQTLs for
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the cis-eQTL (Fig. 4D and fig. S24). Colocaliza-
tion of cis-eQTLs and trans-eQTLs was wide-
spread and often tissue specific, with Fig. 4E
showing cis-eQTLs with at least 10 nominally
significant colocalized trans-eQTLs each [pos-
terior probability of colocalization (PP4) > 0.8
and trans-eQTL P < 10−5], pinpointing how
local effects on gene expression can potentially
lead to downstream regulatory effects across the
genome (fig. S25 and table S16). The many re-
maining trans-eQTLs that do not coincide with
a cis-eQTL may arise owing to mechanisms in-
cludingundetected cis effects in specific cell types
or conditions, protein coding changes, effects on
cell type heterogeneity, or more complex causal-
ity such as a variant that influences a trait with
downstream consequences on gene expression.

Genetic regulatory effects mediate complex
trait associations

To analyze the role of regulatory variants in
genetic associations for human traits, we first
asked whether variants in the GWAS catalog
were enriched for significant QTLs compared
with all variants tested for QTLs (11). We ob-
served a 1.46-fold enrichment for cis-eQTLs
(63% versus 43%) and 1.86-fold enrichment
for cis-sQTLs (37% versus 20%). The enrich-
ment was even stronger for trans-eQTLs [6.97-
fold (0.029% versus 0.0042%)], consistent with
other analyses (39) (Fig. 5A, fig. S26, tables S5
and S6). Cell type proportion may influence
detection of trans-eQTLs in heterogeneous
tissues and may also be reflected in GWAS
associations for blood cell count phenotypes
and other complex traits. To minimize the
possible impact of cell type heterogeneity on
these enrichment statistics, we excluded blood
cellularity traits and repeated these analyses.
The resulting enrichments were 5.21-fold for
trans-eQTLs, 1.43-fold for cis-eQTLs, and 1.81-fold
for cis-sQTLs, largely preserving the patterns
observed using the full set of GWAS traits.
This approach does not leverage the full

power of GWAS andQTL association statistics,
nor does it account for LD contamination, a
situation wherein the causal variants for QTL
andGWAS signals are distinct but LDbetween
the two causal variants can suggest a false
functional link (40). Therefore, for subsequent
analyses (below) we selected 87 GWASs rep-
resenting a broad array of binary and contin-
uous complex traits that have summary results
available in the public domain (11, 41). Tomatch
the ancestry of the GWASs, analyses were per-
formed using cis-QTL statistics calculated from
the European subset of GTEx donors (fig. S29).
The analyses were performed for all pairwise
combinations of 87 phenotypes and 49 tissues
and are summarized using an approach that
accounts for similarity between tissues and
variable standard errors of the QTL effect es-
timates, driven mainly by tissue sample size
(fig. S27 and tables S4 and S11) (11).

To analyze themediating role of cis-regulation
of gene expression on complex traits (35, 42), we
used two complementary approaches,QTLEnrich
(43) and stratified LD score regression (S-LDSC)
(11, 44). To rule out the possibility that en-
richment is driven by specific features of cis-
QTLs such as allele frequency, distance to the
transcription start site, or local level of LD
[number of LD proxy variants; coefficient of
determination (R2) ≥ 0.5], we used QTLEn-
rich. We found a 1.46-fold (SE = 0.006) and
1.56-fold (SE = 0.007) enrichment of trait as-
sociations among best cis-eQTLs and cis-sQTLs,
respectively, adjusting for enrichment among
matched null variants (Fig. 5A and table S7).
The fact that these enrichment estimates
differ little from those derived from the GWAS
catalog overlap (above), even after accounting
for the potential confounders, indicates how
relatively robust these estimates are. Next, we
used S-LDSC, adjusting for functional annota-
tions (44), to confirm the robustness of these
results and to analyze how GWAS enrichment
is affected by the causal eVariant or sVariant
being typically unknown (11). We computed the
heritability enrichment of all cis-QTLs, fine-
mapped cis-QTLs (in 95% credible set and
posterior probability > 0.01 from dap-g), and
fine-mapped cis-QTLs with maximum poste-
rior inclusion probability as continuous anno-
tation (45) (Fig. 5A). The largest increase in
GWAS enrichment was for likely causal cis-QTL
variants [11.1-fold (SE = 1.2) for cis-eQTLs and
14.2-fold (SE = 2.4) for cis-sQTLs, for the con-
tinuous annotation], which is strong evidence
of shared causal effects of cis-QTLs andGWAS,
and for the importance of fine-mapping.
Joint enrichment analysis of cis-eQTLs and

cis-sQTLs shows an independent contribution
to complex trait variation from both (fig. S28)
(11), consistent with their limited overlap (fig.
S22). The relative GWAS enrichments of cis-
sQTLs and cis-eQTLs were similar (Fig. 5A; not
significant for the robust QTLEnrich and LDSC
analyses), but the larger number of cis-eQTLs
discovered (Fig. 2) suggests a greater aggregated
contribution of cis-eQTLs.
While these enrichment methods are pow-

erful for genome-wide estimation of the QTL
contribution to GWAS signals, they are not
informative of regulatory mechanisms in indivi-
dual loci. Thus, to provide functional interpreta-
tion of the 5385 significant GWAS associations
in 1167 loci from approximately independent LD
blocks (46) across the 87 complex traits, we per-
formed colocalizationwithENLOC (32) to quan-
tify the probability that the cis-QTL and GWAS
signals share the same causal variant. We also
assessed the association between the geneti-
cally regulated component of expression or
splicing and complex traits with PrediXcan
(11, 41, 47). Both methods take multiple inde-
pendent cis-QTLs into account, which is critical
in large cis-eQTL studies with widespread allelic

heterogeneity, such as GTEx. Of the 5385 GWAS
loci, 43 and 23% were colocalized with a cis-
eQTL and cis-sQTL, respectively (Fig. 5B). A
large proportion of colocalized genes coincide
with significant PrediXcan trait associations
with predicted expression or splicing (median
of 86 and 88% across phenotypes, respec-
tively) (figs. S30 to S33 and tables S8 and S15),
with the full resource available in (41). While
colocalization does not prove a causal role of a
QTL in any given locus nor a genome-wide
proportion of GWAS loci driven by eQTLs,
these results do suggest target genes and their
potential molecular changes for thousands of
GWAS loci, sometimes including both cis and
trans targets (fig. S34).
Having multiple independent cis-eQTLs for

a large number of genes allowed us to test
whether mediated effects of primary and sec-
ondary cis-eQTLs on phenotypes—the ratio of
GWAS and cis-eQTL effect sizes—are concor-
dant. To ensure that concordance is not driven
by residual LD between primary and second-
ary signals, we used LD-matched cis-eGenes
with low colocalization probability as controls
(11, 41) and observed a significant increase in
primary and secondary cis-eQTL concordance
for colocalized genes (correlated t test P < 10−30)
(Fig. 5C). Additionally, colocalization of a cis-
eQTL increased the colocalization of an inde-
pendent cis-sQTL in the same locus (OR = 4.27,
Fisher’s exact test P < 10−16) and, correspond-
ingly, colocalization of a cis-sQTL increased
cis-eQTL colocalization (OR = 4.54, Fisher’s
exact test P < 10−16) (figs. S35 and S36). These
observations indicate that multiple regulatory
effects for the same gene often mediate the
same complex trait associations. Furthermore,
genes with suggestive rare variant trait asso-
ciations in the UK Biobank (48) have a sub-
stantially increased proportion of colocalized
eQTLs for the same trait (Fig. 5D and fig. S37),
showing concordant trait effects from rare
coding and common regulatory variants (49).
These genes, as well as those with multiple
colocalizing cis-QTLs, represent bona fide dis-
ease genes with multiple independent lines
of evidence.
The growing number of genome and phe-

nome studies has revealed extensive pleiotropy,
where the same variant or locus associates
with multiple organismal phenotypes (50).
We sought to analyze how this phenomenon
can be driven by gene regulatory effects. First,
we calculated the number of cis-eGenes of
each fine-mapped and LD-pruned cis-eVariant
per tissue at local false sign rate (LFSR) < 5%,
with cross-tissue smoothing of effect sizeswith
mashr (11, 51). We observed that a median of
57% of variantswere associatedwithmore than
one geneper tissue, typically co-occurring across
tissues, indicating widespread regulatory plei-
otropy. Using a binary classification of cis-
eVariants with regulatory pleiotropy defined
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Fig. 6. Tissue specificity of cis-QTLs. (A) Tissue clustering with pairwise
Spearman correlation of cis-eQTL effect sizes. (B) Similarity of tissue clustering
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across tissues. (C) Tissue activity of cis expression and splicing QTLs, where
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as those associated withmore than one gene,
we observed that they are more significantly
associated with complex traits compared with
matched cis-eVariants (fig. S38). This could
be due to the fact that if a variant regulates
multiple genes, there is a higher probability
that at least one of them affects a GWAS
phenotype.
However, cis-eVariants with regulatory plei-

otropy also have higher GWAS complex trait
pleiotropy (50) than cis-eVariants with effects
on a single gene (Fig. 5E). This observation
suggests a mechanism for complex trait pleiot-

ropy of genetic effects where the expression
of multiple genes in cis, rather than a single
eGene effect, translates into diverse downstream
physiological effects. Furthermore, GWAS plei-
otropy is higher for tissue-shared (41) than
tissue-specific cis-eQTLs, indicating that regu-
latory effects affectingmultiple tissues aremore
likely to translate to diverse physiological traits
(Fig. 5E).

Tissue specificity of genetic regulatory effects

The GTEx data provide an opportunity to study
patterns andmechanisms of tissue specificity of

the transcriptome and its genetic regulation.
Pairwise similarity of GTEx tissues was quanti-
fied from gene expression and splicing, as well
as allelic expression, eQTLs in cis and trans,
and cis-sQTLs (Fig. 6A and fig. S41) (11). These
estimates show consistent patterns of tissue
relatedness, indicating that the biological pro-
cesses that drive transcriptome similarity also
control tissue sharing of genetic effects (Fig.
6B). As seen in earlier versions of the GTEx
data (9, 10), the brain regions form a separate
cluster, and testis, lymphoblastoid cell lines,
whole blood, and sometimes liver tend to be

The GTEx Consortium, Science 369, 1318–1330 (2020) 11 September 2020 9 of 13

0.0 0.2 0.4 0.6 0.8 1.0

PP4 ieQTL

0.0

0.2

0.4

0.6

0.8

1.0

PP
4

eQ
TL

64 111174

eQTL ieQTL

BRNCTXA - Neurons

LIVER - Hepatocytes

CLNTRN - Epithelial cells

HRTLV - Myocytes

BREAST - Adipocytes

SKINS - Keratinocytes

WHLBLD - Neutrophils

5 blood cell types

1.0

1.5

2.0

2.5

3.0

#
 e

Q
TL

s 
/ 

eG
en

e

ieGene
not ieGene

= eQTLs
= eQTLs

BRNCTXA - Neurons

LIVER - Hepatocytes

CLNTRN - Epithelial cells

HRTLV - Myocytes

BREAST - Adipocytes

SKINS - Keratinocytes

WHLBLD - Neutrophils

0

200

400

600

800

1000

1200

ie
G

en
es

 o
r i

sG
en

es

4 13 2 5

1087

117 9070
135

40 41 25

1120

169

Not eGene
eGene
Not sGene
sGene

−5 0 5 10

log2(Fold enrichment)

Enhancer
Promoter

Open chromatin
Promoter-flanking
CTCF binding site

TF binding site
3' UTR
5' UTR

Frameshift
Intron

Missense
NC transcript

Splice acceptor
Splice donor
Splice region

Stop gained
Synonymous

eQTL
ieQTL
sQTL
isQTL

0

6

12

18

24
rs2926494Unconditional

Shared in 5 cell types

0

5

10

15

-lo
g 1

0
(p

-v
al

ue
)

rs2926494Indep.
eQTL 1

0

5

10

15

rs2926494

Indep.
eQTL 2

45.8 46.0 46.2 46.4

NCOA4

rs10740051

Monocytes

rs10740051

rs10740051

45.8 46.0 46.2 46.4

NCOA4

0.0
0.2
0.4
0.6
0.8
1.0

r2

Position on chr11 (Mb)

W
ho

le
 B

lo
od

A B C

D E
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the ieGene or isGene was discovered by cis-eQTL or cis-sQTL analysis in bulk
tissue. Colored dots are proportional to sample size. (B) Functional enrichment
of neutrophil ieQTLs and isQTLs compared with cis-eQTLs and cis-sQTLs
from whole blood. (C) Proportion of conditionally independent cis-eQTLs per
eGene, for eGenes that do or do not have ieQTLs in GTEx, and for eGenes that
have shared (=eQTLs) or nonshared (≠eQTLs) cis-eQTLs across five sorted blood
cell types. (D) Whole blood cis-eQTL P value landscape for NCOA4, for the
standard analysis (unconditional; top row) and for two independent cis-eQTLs

(bottom rows). In a dataset of five sorted cell types (56), analyses of all cell
types yielded a lead eVariant, rs2926494 (left), which is in high LD with
the first independent cis-eQTL but not the second. The lead variant in monocyte
cis-eQTL analysis, rs10740051, is in high LD with the second conditional
cis-eQTL, indicating that this cis-eQTL is active specifically in monocytes.
Thus, the full GTEx whole blood cis-eQTL pattern and allelic heterogeneity is
composed of cis-eQTLs that are active in different cell types. (E) COLOC
posterior probability (PP4) of GWAS colocalization with whole blood ieQTLs and
eQTLs of the same eGene. Three hundred forty-nine gene-trait combinations
across 132 genes and 36 GWAS traits showed evidence of colocalization
(PP4 > 0.5) with an ieQTL and/or eQTL.
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outliers, while most other organs have a notably
high degree of similarity to each other. This
indicates that blood is not an ideal proxy for
most tissues and that some other relatively
accessible tissues, such as skin, may better cap-
ture molecular effects in other tissues.
The overall tissue specificity of QTLs (11)

follows a U-shaped curve, recapitulating pre-
vious GTEx analyses (9, 10), where genetic
regulatory effects tend to be either highly tissue
specific or highly shared (Fig. 6C), with trans-
eQTLs beingmore tissue specific than cis-eQTLs
(fig. S40). Cis-sQTLs appear to be significantly
more tissue specific than cis-eQTLs when con-
sidering all mapped cis-QTLs, but this pattern
is reversed when considering only those cis-
QTLs where the gene or splicing event is
quantified in all tissues (Fig. 6C and fig. S39).
These observations indicate that splicingmea-
sures are more tissue specific than gene ex-
pression, but genetic effects on splicing tend to
be more highly shared, which is consistent with
pairwise tissue-sharingpatterns (fig. S41). These
opposite patterns are important for under-
standing effects that disease-causing splicing
variants may have across tissues and for vali-
dation of splicing effects in cell lines that rarely
are an exact match to cells in vivo.
Next, we analyzed the sharing of AE across

multiple tissues of an individual, which is a
metric of sharing of any heterozygous regula-
tory variant effects in that individual. Variation
in AE has been useful for analysis of rare,
potentially disease-causing variants (52). Using
a clustering approach (11), we found that in
97.4% of the cases, AE across all tissues
forms a single cluster. This suggests that in
AE analysis, different tissues are often rela-
tively good proxies for one another, provided
that the gene of interest is expressed in the
probed tissue (fig. S42).
We next computed the cross-tissue correla-

tion of eQTL effect size and eGene expression
level—often a proxy for gene functionality—
and discovered that 1971 cis-eQTLs (7.4%; FDR
5%) had a significant and robust correlation
between eGene expression and cis-eQTL effect
size across tissues (Fig. 6D and fig. S43). These
correlated cis-eQTLs are split nearly evenly
between negative (937) and positive (1034)
correlations. Thus, the tissues with the highest
cis-eQTL effect sizes are equally likely to be
among tissues with higher or lower expression
levels for the gene. Trans-eQTLs show a dif-
ferent pattern, typically being observed in tissues
with high expression of the trans-eGene relative
to other tissues (fig. S43).
These observations raise the question of how

to prioritize the relevant tissues for eQTLs in
a disease context. To address this, we chose a
subset of GWAS traits with a strong prior indi-
cation for the likely relevant tissue(s) (table S12).
Analyzing colocalized cis-eQTLs for 1778 GWAS
loci (11), we discovered that the relevant tissues

were significantly enriched in having high
expression and effect sizes (paired Wilcoxon
sign test P < 1.5 × 10−4), but the relatively weak
signal indicates that pinpointing the likely rele-
vant tissue for GWAS loci is challenging (figs.
S44 and S45 and table S9). These results in-
dicate that both effect sizes and gene expres-
sion levels are important for interpreting the
tissue context where an eQTL may have down-
stream phenotypic effects.
The diverse patterns of QTL tissue specificity

raise the question of what molecular mecha-
nisms underlie the ubiquitous regulatory ef-
fects of some genetic variants and the highly
tissue-specific effects of others. To gain insight
into this question, we modeled cis-eQTL and
cis-sQTL tissue specificity using logistic regres-
sion as a function of the lead eVariant’s genomic
and epigenomic context (11). Cis-QTLs where
the top eVariant was in a transcribed region
had overall higher sharing than those in clas-
sical transcriptional regulatory elements, in-
dicating that genetic variants with post- or
cotranscriptional expression or splicing effects
have more ubiquitous effects (Fig. 6E). Canon-
ical splice and stop-gained variant effects had
the highest probability of being shared across
tissues, which may benefit disease-focused
studies relying on likely gene-disrupting
variants.
We also considered whether varying reg-

ulatory activity between tissues contributed
to tissue specificity of genetic effects, and we
found that shared chromatin states between
the discovery and query tissues were associated
with increased probability of cis-eQTL sharing
and vice versa (Fig. 6F). cis-eQTLs and cis-sQTLs
followed similar patterns. Because cis-sQTLs
are more enriched in transcribed regions and
likely arise via posttranscriptional mechanisms
(Fig. 4A), this is likely to contribute to their
higher overall degree of tissue sharing (Fig.
6C). In comparison to cis-eQTLs, cis-sQTLs are
more often located in regions where regula-
tory effects are shared.
These data indicate a possible means by

which we can predict whether a cis-eQTL ob-
served in a GTEx tissue is active in another
tissue of interest, using the variant’s anno-
tation and properties in the discovery tissue
(11). After incorporating additional features
including cis-QTL effect size, distance to tran-
scription start site, and eGene and sGene ex-
pression levels, we obtain reasonably good
predictions of whether a cis-QTL is active in
a query tissue (median area under the curve =
0.779 and 0.807, minimum = 0.703 and 0.721,
maximum= 0.807 and 0.875 for cis-eQTLs and
cis-sQTLs, respectively) (fig. S46). These re-
sults suggest that it is possible to extrapolate
the GTEx cis-eQTL catalog to additional tissues
and potentially developmental stages, where
population-scale data for QTL analysis are
particularly difficult to collect.

From tissues to cell types
The GTEx tissue samples consist of heteroge-
neous mixtures of multiple cell types. Hence,
the RNA extracted and QTLs mapped from
these samples reflect a composite of genetic
effects that may vary across cell types andmay
mask cell type–specific mechanisms. To char-
acterize the effect of cell type heterogeneity on
analyses from bulk tissue, we used the xCell
method (53) to estimate the enrichment of 64
reference cell types from the bulk expression
profile of each sample (11). Although these
results need to be interpreted with caution
given the scarcity of validation data (54), the
resulting enrichment scores were generally
biologically meaningful with, for example,
myocytes enriched in heart left ventricle and
skeletal muscle; hepatocytes enriched in liver;
and various blood cell types enriched in whole
blood, spleen, and lung, which harbors a large
leukocyte population (fig. S47). Interestingly,
the pairwise relatedness of GTEx tissues de-
rived from their cell type composition is highly
correlated with tissue sharing of regulatory
variants (cis-eQTL versus cell type composition
Rand index = 0.92) (Fig. 6B and figs. S48 and
S41), suggesting that similarity of regulatory
variant activity between tissue pairs may
often be due to the presence of similar cell
types and not necessarily shared regulatory
networks within cells. This observation high-
lights the key role that characterizing cell
type diversity will have for understanding
not only tissue biology but genetic regulatory
effects as well.
Enrichment of many cell types shows inter-

individual variation within a given tissue,
partially owing to tissue sampling variation
between individuals. This variation can be
leveraged to identify cis-eQTLs and cis-sQTLs
with cell type specificity by including an in-
teraction between genotype and cell type en-
richment in the QTL model (11, 55). We applied
this approach to seven tissue–cell typepairswith
robustly quantified cell types in the tissue where
each cell type was most enriched (Fig. 7A) [an
additional 36 pairs are described in (54)]. The
largest numbers of cell type interaction cis-
eQTLs and cis-sQTLs (ieQTLs and isQTLs, re-
spectively) were 1120 neutrophil ieQTLs and
169 isQTLs in whole blood and 1087 epithelial
cell ieQTLs and 117 isQTLs in transverse colon
(Fig. 7A). Of these ieQTLs, 76 and 229, respec-
tively, corresponded to an eGene for which no
QTL was detected in bulk tissue.
We validated these effects using published

eQTLs from purified blood cell types (56),
where neutrophil eQTLs had higher neutro-
phil ieQTL effect sizes than eQTLs from other
blood cell types (fig. S49). For other cell types,
external replication data was not available.
Thus, we verified the robustness of the ieQTLs
by the allelic expression validation approach
that was used for sex- and population-biased
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cis-eQTL analyses: For ieQTL heterozygotes, we
calculated the Spearman correlation between
cell type enrichment and ieQTL effect size
from AE data and observed a high validation
rate (54). Note that ieQTLs and isQTLs should
not be considered cell type–specific QTLs, be-
cause the enrichment of any cell type may be
(anti)correlated with other cell types (fig. S50).
While full deconvolution of cis-eQTL effects
driven by specific cell types remains a chal-
lenge for the future, ieQTLs and isQTLs can
be interpreted as being enriched for cell type–
specific effects.
In most subsequent analyses to characterize

the properties of ieQTLs and isQTLs, we focused
on neutrophil ieQTLs, which are numerous
and supported by external replication data.
Functional enrichment analyses of these QTLs
show that they largely follow the enrichment
patterns observed for bulk tissue cis-QTLs
(Fig. 7B). However, ieQTLs are more strongly
enriched in promoter-flanking regions and
enhancers, which are known to be major
drivers of cell type–specific regulatory effects
(2). Epithelial cell ieQTLs yielded similar pat-
terns (fig. S51).
We hypothesized that the widespread allelic

heterogeneity observed in the bulk tissue cis-
eQTL data could be partially driven by an
aggregate signal from cis-eQTLs that are each
active in a different cell type present in the
tissue. Indeed, the number of cis-eQTLs per
gene is higher for ieGenes than for standard
eGenes, especially in skin and blood (Fig. 7C).
While differences in power could contribute
to this pattern, it is corroborated by eGenes
that have independent cis-eQTLs (R2 < 0.05)
in five purified blood cell types (56) also
showing an increased amount of allelic heter-
ogeneity in GTEx whole blood (Fig. 7, C and
D). Thus, quantifying cell type specificity
can provide mechanistic insights into the
genetic architecture of gene expression and
may be leveraged to improve the resolution
of complex patterns of allelic heterogeneity
wherein we can distinguish effects manifest-
ing in different cell types.
Next, we analyzed how cell type interaction

cis-QTLs contribute to the interpretation of
regulatory variants underlying complex dis-
ease risk. GWAS colocalization analysis of
neutrophil ieQTLs (11) revealed multiple loci
(111, ~32%) that colocalize only with ieQTLs
and not with whole blood cis-eQTLs (Fig. 7E),
although 75% (42 of 56) of the corresponding
eGenes have both cis-eQTLs and ieQTLs. Im-
proved resolution into allelic heterogeneity ap-
pears to contribute to colocalization exclusively
with eQTLs. For example, the absence of colo-
calization between a platelet countGWAS signal
and bulk tissue cis-eQTL for SPAG7 appears to
be due to the whole blood signal being an ag-
gregate of multiple independent signals (fig.
S52). The neutrophil ieQTL analysis uncovers a

specific signal that mirrors the GWAS associa-
tion, suggesting that platelet counts are affected
by SPAG7 expression only in one or several
specific cell types. Thus, in addition to previously
undetected colocalizations pinpointing poten-
tial causal genes, ieQTL analysis has the po-
tential to provide insights into cell type–specific
mechanisms of complex traits.

Outlook

The GTEx v8 data release represents a deep
survey of both intra- and interindividual trans-
criptome variation across a large number of
tissues. With 838 donors and 15,201 samples—
approximately twice the size of the v6 release
used in the previous set of GTEx Consortium
papers—we have created a comprehensive re-
source of genetic variants that influence gene
expression and splicing in cis. This substan-
tially expands and updates the GTEx catalog of
sQTLs, doubles the number of eGenes per
tissue, and saturates the discovery of eQTLs
with greater than twofold effect sizes in ~40
tissues. The fine-mapping data of GTEx cis-
eQTLs provide a set of thousands of likely
causal functional variants. While trans-QTL
discovery and the characterization of sex- and
population-specific genetic effects are still limited
by sample size, analyses of the v8 data provide
important insights into each.
Cell type interaction cis-eQTLs and cis-

sQTLs, mapped with computational estimates
of cell type enrichment, constitute an impor-
tant extension of the GTEx resource to effects
of cell types within tissues. The highly similar
tissue-sharing patterns across these data types
suggest shared biology from cell type composi-
tion to transcriptome variation and genetic re-
gulatory effects. Our results indicate that shared
cell types between tissues may be a key factor
behind tissue sharing of genetic regulatory
effects, whichwill constitute a key challenge to
tackle in the future. Finally, GWAS colocaliza-
tionwith cis-eQTLs and cis-sQTLs provides rich
opportunities for further functional follow-
up and characterization of regulatory mecha-
nisms of GWAS associations.
Given the very large number of cis-eQTLs,

the extensive allelic heterogeneity—multiple
independent regulatory variants affecting the
same gene—is unsurprising. With well-powered
cis-QTL mapping, it becomes possible and
important to describe and disentangle these
effects; the assumption of a single causal variant
in a cis-eQTL locus no longer holds true for
datasets of this scale. Similarly, we highlight
cis-eQTL and cis-sQTL effects on the same
gene, typically driven by distinct causal variants
(4, 35). The joint complex trait contribution of
independent cis-eQTLs and cis-sQTLs and that
of cis-eQTLs and rare coding variants for the
same gene highlights how different genetic
variants and functional perturbations can
converge at the gene level to similar physio-

logical effect. This orthogonal evidence pin-
points highly likely causal disease genes, and
these associations could be leveraged to build
allelic series, a powerful tool for estimating
dosage-risk relationship for the purposes of
drug development (57).
Finally, we provide mechanistic insights

into the cellular causes of allelic heterogene-
ity, showing the separate contributions from
cis-eQTLs active in different cell types to
the combined signal seen in a bulk tissue
sample. With evidence that this increased
cellular resolution improves colocalization in
some loci, cell type–specific analyses appear
particularly promising for finer dissection of
genetic association data.
Integration of GTEx QTL data and func-

tional annotation of the genome provides
powerful insights into the molecular mech-
anisms of transcriptional and posttranscriptional
regulation that affect gene expression levels
and splicing. A large proportion of cis-eQTL
effects are driven by genetic perturbations in
classical regulatory elements of promoters
and enhancers. However, the magnitude of
these enrichments is perhaps unexpectedly
modest, which likely reflects the fact that only
a small fraction of variants in these large re-
gions have true regulatory effects, leading to a
lower resolution of annotating functional va-
riants compared with the nucleotide-level an-
notation of, for example, nonsense or canonical
splice site variants. Context-specific genetic ef-
fects of tissue-specific and cell type interaction
cis-eQTLs are enriched in enhancers and re-
lated elements and their variable activity across
tissues and cell types.
While cis-eQTLs are enriched for a wide

range of functional regions, the vastmajority of
cis-sQTL are located in transcribed regions,
with likely cotranscriptional and/or post-
transcriptional regulatory effects. Interest-
ingly, these appear to be less tissue specific,
which likely contributes to the higher tissue
sharing of cis-sQTLs than cis-eQTLs. The
higher tissue sharing of all cotranscriptional
or posttranscriptional regulatory effects may
facilitate interpretation of potentially dis-
ease-related functional effects of (rare) coding
variants triggering nonsense-mediated decay
or splicing changes, even when the disease-
relevant tissues are not available.
About a third of the observed trans-eQTLs

aremediated by cis-eQTLs, demonstrating how
local genetic regulatory effects can translate to
effects at the level of cellular pathways. All types
of QTLs that were studied are strongmediators
of genetic associations to complex traits, with a
higher relative enrichment for cis-sQTLs than
cis-eQTLs and with trans-eQTLs having the
highest enrichment of all (35). With large
genome- and phenome-wide studies having
uncovered extensive pleiotropy of complex trait
associations, the GTEx data provide important
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insights into the molecular underpinnings of
this observed pleiotropy: Variants that affect
the expression ofmultiple genes andmultiple
tissues have a higher degree of complex trait
pleiotropy, indicating that some of the plei-
otropy arises at the proximal regulatory level.
Dissecting this complexity and pinpointing truly
causal molecular effects that mediate specific
phenotype associations will be a considerable
challenge for the future.
This study of the GTEx v8 data has provided

insights into genetic regulatory architecture
and functional mechanisms. The catalog of
QTLs and associated datasets of annotations,
cell type enrichments, and GWAS summary
statistics requires careful interpretation but
provides insights into the biology of gene reg-
ulation and functional mechanisms of com-
plex traits.We demonstrate howQTL data can
be used to inform onmultiple aspects of GWAS
interpretation: potential causal variants from
fine-mapping, proximal regulatory mechanisms,
target genes in cis, and pathway effects in
trans, in the context of multiple tissues and
cell types. However, our understanding of ge-
netic effects on cellular phenotypes is far from
complete.We envision that further investiga-
tion into genetic regulatory effects in specific
cell types, study of additional tissues and de-
velopmental time points not covered by GTEx,
incorporation of a diverse set of molecular
phenotypes, and continued investment in in-
creasing sample sizes from diverse populations
will continue to provide transformative scien-
tific discoveries.
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