Apply for our exciting research Prize!

$25,000 Grand Prize!
Get published in Science!

The *Science-PINS* Prize is a highly competitive international prize that honors scientists for their excellent contributions to neuromodulation research. For purposes of the Prize, neuromodulation is any form of alteration of nerve activity through the delivery of physical (electrical, magnetic, or optical) stimulation to targeted sites of the nervous system with implications for translational medicine.

For full details, judging criteria and eligibility requirements, visit:

/www.sciencemag.org/prizes/pins

Submission Deadline: 15 March 2021
Pushing the Boundaries of Knowledge

As AAAS’s first multidisciplinary, open access journal, Science Advances publishes research that reflects the selectivity of high impact, innovative research you expect from the Science family of journals, published in an open access format to serve a vast and growing global audience. Check out the latest findings or learn how to submit your research: ScienceAdvances.org

GOLD OPEN ACCESS, DIGITAL, AND FREE TO ALL READERS
Felix Scholz, a junior researcher at Waseda University in Tokyo, researches the integration of computational geometry and computer engineering. More precisely, he develops geometry representations suitable for computer-aided design (CAD), computer-aided engineering (CAE), and computer-aided manufacturing.

“Classically, these areas have used different geometry representations, for example, smooth spline surfaces for CAD and finite element meshes for CAE, and a lot of effort was needed to translate one to the other in practical applications,” he says.

To solve the puzzle, Scholz has been using a newly developed method known as isogeometric analysis (IGA). IGA reduces the time needed for scientists and engineers to produce computer models or simulations of complex and diverse events such as hurricanes and car crash tests. “Currently, I am working on piece-wise developable surfaces—surfaces that can be manufactured by bending flat materials such as sheet metal without stretching them,” says Scholz. For example, this method can be applied to architecture, where buildings are designed using such surfaces for their ease of construction as well as their aesthetic properties.

Scholz made his way to Japan in November 2020 on the advice of his postdoctoral advisor at the Johann Radon Institute for Computational and Applied Mathematics in Austria, who told him about a position at Waseda. He successfully applied for the job and was fortunate to be offered a place in Kenji Takizawa’s laboratory at Waseda.

Takizawa is affiliated with the Multiscale Analysis, Modelling and Simulation (MAMAS) Model Unit at Waseda (see sidebar), and his laboratory is also a member of the Team for Advanced Flow Simulation and Modeling (TAFSM¹). TAFSM is focused on computational engineering analysis using a space–time computer modeling method developed by the team. By combining their method with IGA, they were able to more precisely model and analyze interactions between fluids and moving structures. This enabled them to solve modeling problems as varied and challenging as designing the parachute system for NASA’s returning Orion spacecraft and illustrating the effects of an aneurysm on blood flow to help clinicians.

Scholz was supposed to arrive in Japan on June 1, 2020, but that came undone with the rise of COVID-19.

¹ www.tafsm.org.
To prevent the disease from spreading, the Japanese government restricted overseas travelers from entering the country. Fortunately, Waseda was able to arrange for him to work remotely.

When the entry of foreigners was permitted again in October 2020, Scholz made new preparations and finally arrived in Japan in November. “But I had to stay indoors because the government had imposed a fourteen-day quarantine on people coming into the country,” says Scholz.

He was impressed with the care Waseda’s administrative staff took to help him settle in during those difficult early weeks. “For instance, I wasn’t able to use public transport on arriving in Japan because of the quarantine restrictions. So Waseda arranged private transport for me, and they set me up in an apartment in the university’s guest housing.”

Unique solutions to real-world problems

When he was finally able to visit the main Waseda campus in Tokyo, Scholz was delighted to find it larger than expected: “The area around the campus is very attractive; it’s very enjoyable living here.” He was also happy with his work location in the Institute for Frontier Fluid Structure Interaction Analysis, which is housed in the Green Computing Systems Research Organization. At the institute, Scholz and his colleagues tackle a wide range of real-world problems that few research groups are equipped to address. The classes of applications targeted include fluid machinery, ground vehicles, aerospace technologies, home appliances, and medical applications. “We have a large, active group that includes experienced researchers as well as bachelor’s, Master’s, and doctoral degree students.”

The plan is for Scholz to spend up to 3 years doing research at Waseda, which he believes will give him ample time to develop the skills and form the professional relationships necessary to advance his career. “I want to formulate efficient and powerful methods for numerical simulations on complicated geometries. Using new methods, we can increase the efficiency of the overall design process. I’d like to produce results that can be generalized and used to tackle a large class of applications stemming from real-world problems.”

Sponsored by

WASEDA University 早稲田大学
Eppendorf & Science Prize for Neurobiology
The annual Eppendorf & Science Prize for Neurobiology is an international prize which honors young scientists for their outstanding contributions to neurobiological research based on methods of molecular and cell biology. The winner and finalists are selected by a committee of independent scientists, chaired by Science’s Senior Editor, Dr. Peter Stern. If you are 35 years of age or younger and doing great research, now is the time to apply for this prize.

Now It’s Your Turn!

As the Grand Prize Winner, you could be next to receive
> Prize money of US$25,000
> Publication of your work in Science
> Full support to attend the Prize Ceremony held in conjunction with the Annual Meeting of the Society for Neuroscience in the USA
> 10-year AAAS membership and online subscription to Science
> Complimentary products worth US$1,000 from Eppendorf
> An invitation to visit Eppendorf in Hamburg, Germany

It’s easy to apply! Write a 1,000-word essay and tell the world about your work. Learn more at:
eppendorf.com/prize

Application Deadline
June 15, 2021
下一位获奖者就是您！

Eppendorf & Science 神经生物学奖
一年一度的 Eppendorf & Science 神经生物学奖是一项国际奖项，授予用分子与细胞生物学方法在神经生物学研究领域取得非凡成果的青年科学家。获奖者及入围候选人均是由《Science》杂志高级编辑 Peter Stern 博士领衔的独立科学家所组成的委员会评选出。如果您年龄不满 35 岁，并且正在从事出色的研究，现在是时候参选了。

您可能就是下一位获奖者，并将获得:
> $25,000 美元奖金
> 获奖论文发表在《Science》杂志上
> 全额资助得以参加美国神经科学协会年会和颁奖仪式
> 10 年 AAAS 会员和《Science》电子期刊赠阅
> 赠送价值 $1,000 美元的 Eppendorf 产品
> 邀请参观位于德国汉堡的 Eppendorf 总部

申请非常容易！只需写一份 1,000 字的文章，并告诉大家您所从事的研究工作。
欲了解更多信息，请登陆:

www.eppendorf.com/prize
2020 Winner
Christopher Zimmerman, Ph.D.
Princeton Neuroscience Institute
For research on thirst and drinking behavior

Now It’s Your Turn!

Eppendorf & Science 神經生物学賞
Eppendorf & Science 神經生物学賞は、分子生物学や細胞生物学に基づく神経生物学研究において、卓越した貢献のある若手科学者に毎年贈られる国際賞です。Science 誌編集主任 Dr. Peter Stern をはじめとする科学者たちの独立委員会によって受賞者に選ばれる最終選出者が選出されます。35歳以下の若手研究に従事しているあなたなら、今こそ、この賞に挑戦する時です。

受賞者は次の内容が授与されます：
> 賞金 25,000 US ドル
> Science 誌に研究内容を掲載
> 米神経科学学会年次総会内にて開催される授賞式への参加を全面サポート
> 10年間の AAAS 会員資格および Science 誌オンライン購読権
> 1,000 US ドル相当のEppendorf製品
> ドイツ、ハンブルクのEppendorf本社にご招待

応募は簡単です！あなたの研究について1,000語のエッセイを書いてください。

詳しくはこちらをご覧ください: eppendorf.com/prize
Get answers. Keep moving.

From the leader in COVID-19 testing—solutions you can trust for the information you need

In a time when getting answers quickly is critical, we’ve responded with solutions to help keep the world moving forward. We deliver:

- **Proven COVID-19 testing solutions for accurate, trusted results**
- **Reliable supply from a single source for uninterrupted testing**
- **Worldwide service and support to get—and keep—testing up and running**

And we’ll continue to anticipate evolving testing needs and proactively developing innovative solutions to address future challenges.

Thermo Fisher Scientific is involved in more than 50% of global COVID-19 testing, helping to enable greater access to fast, reliable, trusted answers.

So the world can keep moving.

Find out more at [thermofisher.com/covid19science](https://www.thermofisher.com/covid19science)

CALL FOR NOMINATIONS FOR THE 2022 HFSP NAKASONE AWARD

The HFSP Nakasone Award is awarded to scientists in recognition of pioneering work that has moved the frontier of the life sciences. This may encompass conceptual, experimental, or technological breakthroughs. The award recognizes the vision of former Prime Minister Nakasone of Japan in the creation of the Organization.

The competition is open; it is not limited to HFSP awardees and there is no age limit for candidates. In selecting the awardee, the Council of Scientists will pay particular attention to recent breakthroughs by younger scientists. The awardee will receive an unrestricted research grant of 10,000 USD, a commemorative medal, and an invitation to deliver the HFSP Nakasone Lecture at the 2022 HFSP Awardees Meeting.

Previous winners of the HFSP Nakasone Award are listed on the HFSP website (see the link below).

Nominations must be received before 23 April 2021 and include the HFSP nomination form and the nominee’s CV. For more information see:

http://www.hfsp.org/awardees/hfsp-nakasone-award

PREVIOUS WINNERS

- Anthony Hyman & Clifford Brangwynne (2021)
- Angelika Amon (2020)
- Michael Hall (2019)
- Svante Pääbo (2018)
- David Julius (2017)
- Emmanuelle Charpentier & Jennifer Doudna (2016)
- James Collins (2015)
- Uri Alon (2014)
- Stephen Quake (2013)
- Gina Turrigiano (2012)
- Michael Elowitz (2011)
- Karl Deisseroth (2010)
CALL FOR PAPERS

Cyborg and Bionic Systems

Cyborg and Bionic Systems is an online-only, Open Access journal published in affiliation with the Beijing Institute of Technology (BIT) and distributed by the American Association for the Advancement of Science (AAAS). The journal publishes original, peer-reviewed articles based on fundamental, applied science, or their interaction. Cyborg and Bionic Systems promotes the knowledge interchange and hybrid system codesign between living beings and robotic systems. The journal also covers a wide range of fields related to cybernetic organisms (cyborg) and bionic systems (CBS), mainly including robotics, biomedical engineering and neuro-engineering.

Submit your research to Cyborg and Bionic System today!
Learn more at spj.sciencemag.org/cbsystems

The Science Partner Journal (SPJ) program was established by the American Association for the Advancement of Science (AAAS), the nonprofit publisher of the Science family of journals. The SPJ program features high-quality, online-only, Open Access publications produced in collaboration with international research institutions, foundations, funders and societies. Through these collaborations, AAAS furthers its mission to communicate science broadly and for the benefit of all people by providing top-tier international research organizations with the technology, visibility, and publishing expertise that AAAS is uniquely positioned to offer as the world's largest general science membership society. Visit us at spj.sciencemag.org

ARTICLE PROCESSING CHARGES WAIVED UNTIL JULY 2023
Science Webinars help you keep pace with emerging scientific fields!

Stay informed about scientific breakthroughs and discoveries.
Gain insights into current research from top scientists.
Take the opportunity to ask questions during live broadcasts.
Get alerts about upcoming free webinars.

Sign up at: webinar.sciencemag.org/stayinformed
The heart of the matter.

The NEBNext Ultra™ II workflow lies at the heart of NEB’s portfolio for next gen sequencing library preparation. With specially formulated master mixes and simplified workflows, high quality libraries can be generated with low inputs and reduced hands-on time.

As sequencing technologies improve and applications expand, the need for compatibility with ever-decreasing input amounts and sub-optimal sample quality grows. Scientists must balance reliability and performance with faster turnaround, higher throughput and automation compatibility.

NEBNext Ultra II modules and kits for Illumina® are the perfect combination of reagents, optimized formulations and simplified workflows, enabling you to create DNA or RNA libraries of highest quality and yield, even when starting from extremely low input amounts.

The Ultra II workflow is central to many of our NEBNext products, including:
- Ultra II DNA & FS DNA Library Prep
- Enzymatic Methyl-seq
- Ultra II RNA & Directional RNA Library Prep
- Single Cell/Low Input RNA Library Prep
- Module products for each step in the workflow

The Ultra II workflow is available in convenient kit formats or as separate modules — it is easily scalable and automated on a range of liquid handling instruments.

The NEBNext Ultra II workflow has been cited in thousands of publications, as well as a growing number of preprints and protocols related to COVID-19. Citation information and extensive performance data for each product is available on neb.com.

To learn more about why NEBNext is the choice for you, visit NEBNext.com.