Keen interest in the RCA Electron Microscope grows more and more general as new information is released about results obtained with this great research tool. Installed in nearly 50 of the most progressive industrial and institutional laboratories, many important discoveries have already been made with its aid.

In bacteriology, biology, metallurgy, chemistry, physics, and many other fields of research, the RCA Electron Microscope has abundantly proved its worth. Viruses, bacteria, fibers, catalysts, pigments, films, coatings, detergents, crystalline structures, plastics, particles, glazed and polished surfaces, are now being studied with such profound minuteness of detail as has never before been approached.

Objects hitherto of merely conjectural existence—subjects of speculative theory—are now exposed to direct observation, yielding definite knowledge and conclusions.

Effective use of the RCA Electron Microscope can be mastered readily by any competent laboratory technician.

For industries interested in product improvement—for scientists interested in pure research—it may answer problems which otherwise might remain unsolved for years.

Complete data or literature will be sent promptly on request. Please address RCA Victor Division, Radio Corporation of America, Camden, New Jersey.

RCA ELECTRON MICROSCOPE
SOME PAPERS READ BEFORE THE PITTSBURGH MEETING OF THE AMERICAN CHEMICAL SOCIETY

Dr. Per K. Frolich, of the Standard Oil Development Company, in his presidential address before the American Chemical Society, stated that the danger of oil famine is not immediate. Taking a temperately optimistic view, and not trying to dodge present or anticipated difficulties, he still accepted an estimate of 300 years before the earth runs out of oil. This is assuming consumption at present rate, discovery of new reserves where they can reasonably be expected, and unhindered production and distribution.

The United States is especially favored as an oil-producing country, Dr. Frolich pointed out. While its boundaries enclose only 5 per cent. of the land area of the earth, it contains 15 per cent. of the area of the structures most favorable for the occurrence of oil fields. He estimated that the forty-six billion barrels thus far discovered and partly extracted in this country represent less than half of the oil we shall eventually contribute before the last American pool has been pumped out. A round hundred billion barrels was his estimate of America’s share of the ultimate 600 billion barrels that all the world’s oil fields, existing and yet to be found, should produce. Back of our oil reserves stand our coal beds, which contain an estimated three trillion tons. Coal accounts for more than 98 per cent. of our country’s known energy resources, exclusive of water power. Methods for converting solid coal into liquid oil are already known and in use, and we can turn to them as our supplies of oil and natural gas run low and the cost of gasoline rises accordingly. Such gasoline from coal is not likely to be cheap, however. As compared with a cost of eight and a half cents a gallon from crude oil at two dollars a barrel, gasoline from coal has a cost ranging around twenty cents a gallon. Whether new processes could cut that cost is in the realm of prophecy rather than that of scientific estimate. The better part of wisdom would seem to be not to expect too much until you see it.

CHEMICAL research laboratories, often thought of as a luxury that only big businesses can afford, will operate for the benefit of small and middle-sized businesses as well, in the post-war era. At a symposium on this subject, the speakers told how the needs for research will be met by privately managed consulting laboratories and by government research workers as well as by laboratories owned and operated by the corporations themselves. Small businessmen were promised a share in the rapidly developing field of industries based on farm products, in the address of Dr. O. E. May, research coordinator of the U. S. Agricultural Research Administration. “These include,” he said, “the dry and wet milling of cereal grains, processing of fruits and vegetables, production and processing of vegetable oils, meat packing, dairy products, feeds, fertilizers, insecticides and fungicides, pharmaceuticals, naval stores, fermentation products, rubber, leather, fibers and textiles.” On all these materials, and many besides, the U. S. Department of Agriculture was conducting very active research in its four great regional laboratories when the war interrupted all programs. The laboratories are concentrating on war problems now, but as soon as victory has been won they will return to their normal activities. Conversion, Dr. May stated, will not be a difficult or lengthy process for most parts of the program. Small businesses will of course not be dependent entirely on what government scientists do for them. Charles H. Egan, of the Dewey and Almy Chemical Company, outlined some of the other research resources of the manager of a small business. Even a modestly financed plant can often afford to hire two or three research men, he pointed out, and it can also obtain more information by small research grants to be used in college and university laboratories. The resources and scope of activity of a professional consulting firm with a large laboratory were described by Raymond Stevens and Earl P. Stevenson, of Arthur D. Little, Inc. They pointed out that research is sometimes needed in the most surprising spots: for instance, anthropologists had to be called in when transport planes for paratroopers were being designed, to make sure the seats would fit the anatomies destined to sit in them.

ULTRASONIC waves, which are sound waves far too high pitched for any ears to hear, have strange effects on mixtures and solutions, and may some day become a useful chemical tool, was stated by Professor Karl Solliner, of the University of Minnesota. Audible sound waves come at rates of a few hundreds or thousands per second; ultrasounds, which are started by crystals set into rapid pulsation by high-frequency electric currents, have rates up to a million or more per second. Their effects were first studied some years ago by Professor R. W. Wood, of the Johns Hopkins University, and Dr. A. L. Loomis, in the latter’s private laboratory at Tuxedo Park, N. Y.; since then also by a number of other workers. The waves have been used to make permanent emulsions of such “unmixable” things as oil and water and even water and mercury. Acting on this hint, one investigator used them to homogenize milk so that the cream will not separate out. This use has not yet been commercialized. The waves also disperse exceedingly fine metallic particles through a suspending medium; Professor Solliner suggested their use in this way to produce special, ultra-fine-grained photographic emulsions.

HEATING plastic objects all the way through at the same time, by the same radio-wave treatment used in producing artificial fever in modern medicine, is the newest device to speed up the production of airplane instrument panels and steering wheels, radio housings and knobs, and all the ten thousand other plastic gadgets used in present-day war equipment. It has been given the convenience-name of “heatronic molding.” It was described by V. E. Meharg, of the Bakelite Corporation. Use of high-frequency waves to produce heat in metal objects is not new, but it
WILEY BOOKS in GEOGRAPHY
for your V-12 and AST courses

PRINCIPLES OF HUMAN GEOGRAPHY
By ELLSWORTH HUNTINGTON, Research Associate in Geography, Yale University; Fifth Edition, largely rewritten, based on original work in collaboration with the late S. W. CUSHING.

In this book man's physical environment is clearly shown to influence human culture throughout the world. This result is achieved, first, by a logical development from geographic factors to culture traits rather than vice versa; second, by describing the minimum essentials of the background sciences such as geology, meteorology, and physiography in simple terms with an abundance of familiar illustrations; third, by a generous use of diagrams, maps, and pictures, appropriately inserted and effectively utilized in textual discussion; and fourth, by a style of writing which arouses and sustains interest.

Fifth Edition (1940). 594 pages; 6 by 9; $3.50

COLLEGE GEOGRAPHY
By E. C. CASE, Professor of Geography, and D. R. BERGSMARK, Associate Professor of Geography; both at the University of Cincinnati.

"Case and Bergsmark" offers a general discussion of the all-important geographic factor of location and space relationship, chapters on human relationships to climate, soils and land forms, extensive discussions of the regional geography of the several climatic realms, chapters on mineral resources and industries, transportation and world trade, and an ample selection of charts, maps, and illustrations.

Second Edition (1940). 767 pages; 6 by 9; $4.00

PRINCIPLES OF ECONOMIC GEOGRAPHY
By ELLSWORTH HUNTINGTON, assisted by FRANK E. WILLIAMS, Professor of Geography, University of Pennsylvania, SAMUEL VAN VALKENBURG, Professor of Geography, Clark University, and STEPHEN S. VISHER, Professor of Geography, Indiana University.

This book progresses from the simplest to the most complex elements of the subject. Special features are its analysis of principles governing the use of occupancy of the land, the discussion of food crops as a part of a scheme of diet, and the study of environmental factors and their effort on the industries of the region and the energy and living standards of human beings. One part of the book covers cities, manufacturing, trade, and transportation.

(1940). 715 pages; 6 by 9; $4.00

EUROPE
By SAMUEL VAN VALKENBURG and ELLSWORTH HUNTINGTON.

One-third of this book is given over to a study of Europe as a whole, and the remainder to the separate countries. It gives a balanced analysis of historical, social and political aspects of European development in their relation to geographical features. It leaves the student with a sense of the quality of European life. Ideally suited to the course offered in the Area and Language Program.

(1935). 651 pages; 6 by 9; $4.50

JOHN WILEY & SONS, Inc., 440-4th Ave., New York 16, N. Y.
has not been practical until lately to heat up non-conduc-
tors of electricity in this way. Now that means have been
devised to make it work, it is being used to produce a
more uniform, even heat throughout plastic objects of the
thermosetting variety, in which one heating forms and
hardens the plastic, which will not soften or change for
any number of subsequent heatings. Hitherto it has been
the practice to heat the die, which has meant that the
heat flowed from the outside inward, and was not uni-
formly applied throughout the mass at the same time.

Steel for war, with many of the properties of expen-
sive alloy steels, can be made without the necessity of
adding such hard-to-get elements as chromium and van-
dium, according to Dr. Merle Randall, of the University
of California. It is made by a special heat treatment of
ordinary low-carbon steel. The process, which was or-
iginated by Dr. Randall's colleague, George F. Nelson, of
Berkeley, Calif., consists in heating the steel very hot—
up to 1,700 degrees Fahrenheit, and then suddenly
quenching it in a 35 per cent. solution of either caustic
potash or caustic soda. The metal can then be cold-rolled
into sheets or bars without difficulty. Tests show it to
possess an extraordinarily high strength.

War-necessary sulfur can be salvaged from choking
gas now wasted up the chimneys of factories, oil refin-
eries and smelters, and turned from an irritating nuisance
into hard cash. The process whereby this is accomplished
was described by T. F. Doumani, R. F. Deery and W. E.
Bradley, of the Union Oil Company of California. The
waste gas is sulfur dioxide, the same suffocating fumes
you smell when a sulfur candle is burned. It is an in-
evitable by-product of the refining of many types of crude
oil, the burning of certain kinds of soft coal and the roast-
ing of ores. In the new process this gas is passed over a
catalyst at moderately high temperatures with the addi-
tion of hydrogen. The hydrogen takes the oxygen away
from the sulfur dioxide to form water which comes off as
steam. The sulfur comes off in pure form ready for use
in vulcanizing rubber or for any of its other thousand-
fold industrial tasks.

Keyed to the wartime need for quicker answers to re-
search questions is a method for testing the rust-prevent-
ing properties of paints, on which a report was given by
Dr. G. D. Patterson and Dr. C. K. Sloan, of E. I. du Pont
de Nemours and Company. Instead of painting a thick
slab of steel and then waiting for the paint to begin peel-
ing, a testing method requiring a year or more, a film
only a thousandth of an inch thick is applied to small
sheets of iron foil rolled to a uniform thickness of one
two thousandth of an inch—about one eighth as thick as
common newspaper print. The foil is first cemented to
small slips of glass, then the paint is sprayed on and the
whole set-up is exposed to rust-provoking atmospheric con-
ditions. With metal so thin, it does not take long for
holes to be eaten clear through it, once rust gets started
at all. The length of time a sample holds out before
you can see through it in spots is a measure of the success
of the paint under test.

Looking to a day when gasoline will be a permanent
rarity in the United States and probably in the whole
world, Dr. Gustav Egloff and Prudence Van Arsdel, of
the Universal Oil Products Company, described progress
already made in the development of motor vehicles that
will run without gasoline. These are the producer-gas
units, mostly trucks and buses but including many motor
cars as well, that already ply the streets and roads in oil-
less lands. They convert wood chips, charcoal, and a
number of other solid fuels into gas, which is then fed
into internal combustion engines. Dr. Egloff estimated
that even now there are more than 800,000 such vehicles
in operation.

The possible existence of a new food factor necessary
for reproduction, believed to be different from the
already-known vitamin E, was suggested by H. W.
Schultz, R. E. Gray and H. E. Robinson, of Swift and
Company. The new vitamin (if that is what it is) ap-
pears to be present in meat, but is made useless by heat-
ing. Cats were used in the experiments. Some were fed
on raw meat, others exclusively on meat that had been
highly heated. Tomcats fed on the heated meat sired no
kittens during a period of three and four years. Female
cats similarly fed either had no kittens, or had very few,
and those unhealthy.

Common white sugar is the purest chemical substance
that most of us ever get to see; it is nearer absolute
chemical purity than most of the laboratory compounds
bearing the mark, "C.P." This very purity becomes a
handicap for some purposes; one of the complaints some-
times heard against refined sugar is that it supplies energy
without accompanying vitamins. That vitamins are not
lacking in the source of sugar is indicated by results of
analyses presented by William R. Jackson, of the research
laboratory of Merck and Company. He worked both on
whole cane from Cuba and Louisiana, and on raw sugar-
cane juice. His report: "Whole mature sugarcane is a
fair source of thiamin and riboflavin, rich in pantothenic
acid, and a good source of niacin."

If you want to get all the sugar in some of our common
vegetables, you'll have to eat them raw. This would seem
to be one conclusion to be drawn from studies of E.
Whitman Rice and Louis Lang, of the National Sugar
Refining Company. They found that although onions,
cabbage and carrots contain considerable percentages of
sugar, they lose them in various steps involved in pre-
paring them for the table. Carrots especially "bleed" sugar
very freely. "A preliminary experiment with fresh carrots showed that 50 per cent. of the total solids
were lost when the carrot was subjected to the common
steps of precooking (blanching) before dehydrating and
reconstituting before the final cooking. Losses in cook-
ing will be additional to these mentioned. Further ex-
periments seem to indicate that the losses of valuable
food components of vegetables in certain methods of
processing warrant a re-evaluation of some products.
This is especially true during the present food shortage."
Three Important New Books

THE PHYSICS OF METALS
By Frederick Seitz, Professor of Physics and Department Head, Carnegie Institute of Technology. *Metallurgy and Metallurgical Engineering Series.* 331 pages, 6 x 9, illustrated. $4.00

Here is an entirely non-mathematical treatment of the developments of the physics of metals that have taken place in the past 15 years. It is based on a series of lectures given to metallurgists and physicists at the University of Pennsylvania. The topics treated include the structure of metals, factors determining the stability of alloys, the theory of plasticity of metals, diffusion in metals, the theory of iron-carbon alloys, the electron theory of solids and its applications to cohesion, magnetism, and conductivity.

The book also contains a summary of the theory of dislocations and the role they play in determining plastic flow.

THE STRUCTURE OF METALS. Crystallographic Principles, Techniques, and Data
By Charles S. Barrett, Associate Professor of Metallurgical Engineering, Carnegie Institute of Technology. *Metallurgy and Metallurgical Engineering Series.* 563 pages, 6 x 9, illustrated. $6.00

This is a text and reference book covering structure, properties, and theories of metals and alloys and the crystallographic techniques of physical metallurgy. It includes extensive reviews of (1) preferred orientations and directional properties, (2) effects of cold work and annealing, (3) plastic deformation, (4) dislocation theory, (5) age hardening, (6) transformations, (7) alloy structures, (8) superlattices, (9) electron diffraction, and (10) stress measurement by x-rays.

COPPER AND COPPER BASE ALLOYS
By R. A. Wilkins, Vice-president and Director of Research and Development, and E. S. Bunn, Assistant Director of Research, Revere Copper and Brass Incorporated. 355 pages, 8½ x 11, illustrated. $5.00

Provides a full compilation of physical and mechanical property data on all the common coppers and copper base alloys in wrought form. This data—covering 77 copper and copper base alloys—is shown in accurate, easy-reading charts. In addition, a brief, clear-cut description of each alloy, its general fabrication characteristics and uses accompanies the plotted data on properties.

Send for copies on approval

McGRAW-HILL BOOK COMPANY, INC.
330 West 42nd Street, New York 18, N. Y. Aldwych House, London, W.C.2
Nationally used basic texts, now in wide demand for ASTP, V-12, and Air Force Training Courses

Robeson’s
PHYSICS
819 pages. $4.50
Published last year, this text won immediate approval as an unusually clear, logical, and complete treatment of elementary physics—"a text that the teacher does not have to explain." Recommended for Army courses, it has been adopted by such colleges as Ill. Inst. of Tech., Univ. of Col., Rensselaer Poly. Inst., Univ. of Ala. and many others. Teachers have written that “the problems are a god-send”; “the style is excellent.”

Black’s
An Introductory Course in COLLEGE PHYSICS
2nd Ed. 734 pages. $3.75
Spontaneous enthusiasm has greeted this text wherever it has been used. "The best book on elementary physics I have ever seen," "surpasses my highest expectations" are typical of teachers' comments. It is being used in over 100 classes for Army and Navy trainees—in aviation, pre-medical, engineering as well as basic training courses. The Navy has used it extensively for aviation trainees.

Gilbert’s
ELECTRICITY & MAGNETISM
2nd Ed. 585 pages. $4.50
Long accepted as one of the leading standard texts on the subject, this latest edition is highly recommended. "The build-up of fundamental principles is grand," says one teacher; "inspiring" says the Rev. of Scientific Instruments.

Schneider & Ham:
EXPERIMENTAL PHYSICS for COLLEGES
259 pages. $2.25
A standard laboratory manual for first-year physics, containing 31 experiments covering the subjects specified in both Army and Navy basic training courses. Many problems and exercises are included.

The Macmillan Company
60 FIFTH AVENUE,
NEW YORK, 11
Nationally used basic texts, now in wide demand for ASTP, V-12, and Other Training Courses

Holmes*
GENERAL CHEMISTRY
4th Ed., 729 pages. $3.75
Recommended for the ASTP course in basic chemistry and now widely adopted for both Army and Navy training courses, this text provides notably full, up-to-date material on both the principles and applications of modern chemistry.

Hildebrand, Bray & Latimer:
PRINCIPLES OF CHEMISTRY*
(Hildebrand) 4th Ed. 359 pages. $2.50
A COURSE IN GENERAL CHEMISTRY
(Bray & Latimer) 3rd Ed. 206 pages. $1.75
REF. BOOK ON INORGANIC CHEMISTRY*
(Latimer & Hildebrand) 2nd Ed. 563 pages. $4.00
*These two books are available in one volume at $4.75.

Presenting an intensive course in principles, laboratory work, and a complete reference volume on the descriptive and applied aspects of general chemistry, these three texts are especially adaptable to any pattern of lecture and laboratory work. The "Principles" and "Reference" volumes are especially recommended for ASTP courses, and one or more of these volumes are used at the U. S. Naval Academy, Columbia Univ., and many others.

MacDougall's
PHYSICAL CHEMISTRY
2nd Ed. 722 pages. $4.25
The new edition, published in June, has already been adopted for pre-medical trainees in the V-12 program at Cornell Univ. and for pre-engineering and other V-12 courses in a number of other colleges. Completely up-to-date, it is notable for scientific thoroughness and a rigorous treatment.

Noyes & Swift:
A Course of Instruction in the QUALITATIVE CHEMICAL ANALYSIS OF INORGANIC SUBSTANCES
10th Ed. 418 pages. $2.75
A standard text, well known to every teacher of chemistry and specially recommended for Army and Navy courses.

Teachers planning chemistry courses for the Army and Navy basic college training programs and for other special training courses for the Armed Services will find that these texts admirably meet the designated requirements for such courses.

EXAMINATION COPIES of any of these titles will be sent immediately upon receiving your request.

The Macmillan Company
60 FIFTH AVENUE, NEW YORK, 11
Teachers planning biology courses for Army and Navy college training programs will find that these books admirably fulfill the designated requirements of such courses.

EXAMINATION COPIES of any of these titles will be sent immediately upon receiving your request.

Nationally used basic texts now in wide demand for ASTP, V-12, and Other Training Courses

Woodruff’s

FOUNDATIONS OF BIOLOGY

6th Ed. 773 pages. $3.75

This classic text has long been standard for college biology courses. Princeton Univ., Dartmouth College, Univ. of Ore., Western Reserve Univ., are among the many using it last year both for trainees in the Armed Forces and regular students.

Baird’s Manual of Biology (6th Ed., 449 pages, $2.75) is also widely used with Woodruff’s text, for laboratory work.

Huettner’s

FUNDAMENTALS OF COMPARATIVE EMBRYOLOGY OF THE VERTEBRATES

416 pages. $4.50

This text “satisfies the most exacting requirements,” wrote the Quarterly Review of Biology on its publication. Its scientific exactness, excellent copper-plate engravings made from original drawings, and modern approach all make it a thoroughly reliable text for any course in embryology.

Walter’s

BIOLOGY OF THE VERTEBRATES

2nd Ed. 882 pages. $4.00

A standard text, strongly recommended by teachers who have found their students especially appreciative of the unusually clear and interesting style in which it is written.

Messer’s

An Introduction to VERTEBRATE ANATOMY

406 pages. $3.50

Especially prepared for a one-semester course, this text is excellent for the intensive work required of trainees for the Armed Forces.

The Macmillan Company

60 FIFTH AVENUE, NEW YORK, 11
Organic Chemistry

HILL AND KELLEY

Organic Chemistry

This text reflects valuable experience in teaching organic chemistry to beginning college students. It has been prepared for a rigorous full year's college course with the aim of developing a balanced presentation of the theoretical aspects of organic chemistry, the methods of preparation and reactions of compounds, the I.U.C. system of nomenclature and its relation to earlier systems, and the physiological effects and uses of organic compounds. Questions and problems are given at the end of each chapter.

Excerpts from Reviews

"The subject-matter is well classified and arranged, lucidly and logically presented...the book should prove a very useful and interesting first-year college text, and as a foundation for more advanced and more highly specialized courses"—Science

"One feature which impresses the reader is the emphasis placed on reaction mechanism from the electronic point of view and the frequent use of electronic formulations"—American Journal of Science

By G. Albert Hill, Wesleyan University, and Louise Kelley, Goucher College. 919 Pages. $4.00 (1943)

WERTHEIM

By E. Wertheim, University of Arkansas

Introductory Organic Chemistry

This is a text for the short course which presents the material in a concise manner stressing vital concepts. The book will ground the student in such fundamentals as an appreciation of the significance of the graphic formula, the importance of functional groups in the reactions of compounds, and relationships of simple compounds to each other. Summaries, review questions and charts are included.

82 Illus., 482 Pages. $3.00 (1942)

Experiments in Organic Chemistry

Designed to accompany the above text, this manual offers a wide selection of experiments in elementary organic chemistry. The experiments are presented in two main divisions: "preparations" and "properties."

34 Illus., 221 Pages. $1.35 (1942)

Textbook of Organic Chemistry

This text has been prepared for students majoring in chemistry or specializing in organic chemistry and for those taking pre-medical or chemical engineering courses. Many helpful charts, summaries and tables are included.

110 Illus., 830 Pages. $4.00 (1939)

This guide presents well selected experiments for a year's course. Brief directions for experiments in identification of compounds and a short section on spot tests are included.

24 Illus., 560 Pages. $2.00 (1940)

THE BLAKISTON COMPANY, PHILADELPHIA
The new lab-aid micro-slide cabinets are made of seasoned wood and are so constructed that warpage and breakage can not occur.

Of improved design, made to stack with lab-aid steel cabinets now in use. Color—olive green to match steel cabinets.

U. S. Patent Pending

The TECHNICON CO.
NEW YORK - N. Y.
NOW READY...

"Photographic Plates for Use in Spectroscopy and Astronomy"

FIFTH EDITION

A new, fully revised edition of this well-known publication is now available. In it are listed the characteristics of the special plates for scientific work which are made in the Kodak Research Laboratories. There are over one hundred kinds of these plates, distributed among seven basic types of emulsion, each carefully prepared to provide desirable combinations of speed, contrast, granularity, and resolving power. They are sensitized in various ways to permit photography in spectral regions ranging from the short-wave-length ultraviolet to the infrared at 12,000Å.

A copy of the new edition of the booklet will be sent free upon request.

EASTMAN KODAK COMPANY
Research Laboratories
Rochester, N. Y.

Linde
RARE GASES AND MIXTURES

. . . Spectroscopically Pure
. . . Easily removed from bulb without contamination

Scientific uses for Linde rare gases include—
1. The study of electrical discharges.
2. Work with rectifying and stroboscopic devices.
3. Metallurgical research.
4. Work with inert atmospheres, where heat conduction must be increased or decreased.
 Many standard mixtures are available. Special mixtures for experimental purposes can be supplied upon request.

The word "Linde" is a trade-mark of

THE LINDE AIR PRODUCTS COMPANY
Union Carbide and Carbon Corporation
30 E. 42nd St., New York Offices in Principal Cities
In Canada: Dominion Oxygen Company, Ltd., Toronto

Bacto-Agar

Bacto-Agar is a purified Agar prepared from domestic material. In the manufacture of Bacto-Agar extraneous matter, pigmented portions, and salts are reduced to a minimum, so that the finished product in the form of fine granules will dissolve rapidly, giving clear solutions.

Bacto-Agar is distributed only for use in bacteriological culture media upon proper certification by the purchaser.

Bacto-Asparagine

Bacto-Asparagine is a purified amino acid widely used in synthetic culture media and in the preparation of tuberculin.

Specify "DIFCO"

THE TRADE NAME OF THE PIONEERS
In the Research and Development of Bacto-Peptone and Dehydrated Culture Media.

DIFCO LABORATORIES
INCORPORATED
DETROIT, MICHIGAN
...so that men can fly as high as their planes

The enemy is only one of four adversaries which pilots and crews must fight in the stratosphere. The other three are cold, sub-normal pressure and lack of oxygen.

To think clearly, to see, hear and act—indeed, to keep alive and conscious—high-altitude aviators must inhale oxygen constantly. Because life itself depends upon the cylinders which supply this oxygen, extreme care must be taken in their design and construction, for in them the gas is confined at a pressure of 400 pounds per square inch.

At the Firestone Steel Products Company, one of the principal suppliers of this equipment, Spencer microscopes are used to aid in solving the metallurgical problems involved and in maintaining quality of manufacture.

Optical instruments are so vital to war and public health that the nation's needs absorb practically all of Spencer's greatly increased production.

Spencer LENSI COMPANY
BUFFALO, NEW YORK
SCIENTIFIC INSTRUMENT DIVISION OF AMERICAN OPTICAL COMPANY