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Methods 
 
Methods for Study 1 
 

Overview. In Study 1, we showed participants a series of dots on a computer 

screen and asked them to determine whether each dot was blue or not blue. After many 

trials, we decreased the prevalence of the blue dots for some participants. This and all 

subsequent studies were approved by the Harvard University Committee on the Use of 

Human Subjects.  

Sample. Participants were 22 students at Harvard University (6 males, 16 

females, Mage = 22.5 years, SD = 1.9 years) who received either money or course credit in 

exchange for their participation. One female participant experienced a minor medical 

problem during the study and her data were excluded, leaving 21 participants in the data 

set. In this and all subsequent studies: (a) We set a minimum sample size based on 

previous research that had used similar methods and stimuli, (b) once we reached the 

minimum sample size, we continued to recruit participants through the end of the 

academic term, (c) we did not analyze our data until all participants had been recruited, 

(d) all manipulations, measures, and data exclusions are reported, and (e) data exclusions 

had no impact on the significance of the results. 

Procedures. Upon arrival at the laboratory, participants were escorted to a room 

equipped with a computer display and keyboard, and they remained there for the duration 

of the study. Participants were told that a series of colored dots would appear on the 

screen, one at a time, and that their task was to decide whether each dot was blue or not 

blue, and to indicate their decision by pressing one of two keys on the keyboard that were 

respectively labeled “blue” and “not blue.”  
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On each trial, a colored dot appeared on a solid gray background. The color of the 

dot varied across trials from very purple (60% blue, RGB 100-0-155) to very blue (99.6% 

blue, RGB 1-0-254). Each dot appeared on the screen for 500 milliseconds and was then 

replaced by a question mark, which remained on the screen until participants pressed one 

of the response keys. Participants were told that there would be 1000 trials divided into 

20 blocks, and that the prevalence of blue dots might vary across blocks. Specifically, 

they were told that some blocks “may have a lot of blue dots, and others may have only a 

few.” Participants completed 10 practice trials to ensure they understood the procedure, 

and then completed 1000 test trials. To help participants remain attentive, we allowed 

them to take a break every 50 trials.  

We created two conditions by dividing the color spectrum into two halves that we 

will refer to as the “purple spectrum” (RGB 100-0-155 through RGB 51-0-204) and the 

“blue spectrum” (RGB 50-0-205 through RGB 1-0-254), as shown in Figure S1. Half the 

participants were randomly assigned to the stable condition. In this condition, we 

determined the color of the dot shown on each trial by randomly sampling the two spectra 

with equal probability. We will refer to the probability that a dot was sampled from the 

blue spectrum as the signal prevalence. In the stable condition, the signal prevalence on 

trials 1-1000 was 50%. The remaining participants were assigned to the decreasing 

condition. In this condition, we sampled the two spectra with unequal probability on 

some trials. Specifically, in the decreasing condition the signal prevalence was 50% on 

trials 1-200; 40% on trials 201-250; 28% on trials 251-300; 16% on trials 301-350; and 

6% on trials 351-1000.  
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Analyses and Results. The tasks that participants performed in this and all 

subsequent studies performed may be thought of as signal detection tasks. However, 

traditional signal detection tasks present participants with stimuli that can be objectively 

classified as either signal or noise, and the data are typically analyzed by using the 

number of correct and incorrect responses to calculate d' (sensitivity) and c (response 

threshold) for each participant. Because there are no “objectively correct” answers to 

questions such as “Is this dot blue?” or “Is this face threatening?” or “Is this proposal 

acceptable?” it is not possible to calculate these traditional parameters for our data. Our 

alternative analytic approach is described below. In addition, in this and subsequent 

studies, we used Generalized Linear Mixed Models to account for the nested and 

unbalanced structure of the data. It is worth noting that analyses using alternative 

strategies—such as Bayesian linear mixed-effect models implemented in R using the 

blme package (25) as well as repeated-measures Analysis of Variance with responses 

binned across trials—yielded the same basic pattern of results described below. 

Did the decrease in the prevalence of blue dots cause participants’ concepts of 

blue to expand? To find out, we fit a binomial generalized linear mixed model to our data 

in R (26) using the lme4 package (27). The dependent variable was the participant’s 

identification of a dot as blue or not blue. The independent between-participants variable 

was the participant’s condition (stable or decreasing). The independent within-

participants variables were (a) the dot’s RGB value or what we will call its objective 

color (which ranged from 0% blue to 99.6% blue) and (b) the trial number (which ranged 

from 1 to 1000). We included condition, trial number, and objective color (and all 

interactions between them) as fixed effects in our model. We included as random effects 
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(a) intercepts for participants (who may have entered our study with different thresholds) 

and (b) slopes for trial number. The inclusion of random intercepts significantly 

improved model fit relative to the baseline model, χ2(2) = 494.59, p < 0.001, as did the 

inclusion of random slopes, χ2(2) = 127.66, p < 0.001. Additionally, the inclusion of the 

three-way interaction between condition, trial number, and objective threateningness 

significantly improved model fit, χ2(1) = 48.34, p < 0.001. The generalized linear mixed 

model revealed that a Condition X Objective Color X Trial Number interaction predicted 

participants’ identifications, b = 12.50, SE = 1.75, z = 7.14, p < 0.001, 95% CI [8.85, 

16.09], ( )
2 0.88.GLMM cR =  (All reported 95% confidence intervals are the result of a 

bootstrapping procedure using 1000 bootstrap samples). 

 

Methods for Study 2 

Overview. In Study 2, we replicated the procedure for Study 1, except that 

instead of telling participants in the decreasing condition that the prevalence of blue dots 

might change over trials, we told them that the prevalence of blue dots would decrease 

over trials. 

Sample. Participants were 43 students at Harvard University (10 males, 31 

females, Mage = 20.4 years, SD = 2.1 years) who received either money or course credit in 

exchange for their participation. Two female participants who were given incorrect study 

materials were excluded, as was one male participant who disregarded experimental 

instructions and one male participant who reported being colorblind. This left 39 

participants in the data set. 
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Procedures. The method for Study 2 was identical to the method for Study 1 

except that before the study began, participants were explicitly told what would happen to 

the prevalence of blue dots during the study. Participants in the decreasing condition were 

told: “As the study goes on, blue dots are going to become less common. In other words, 

you will see fewer of them over time.” Participants in the stable condition were told: “As 

the study goes on, blue dots are not going to become more or less common. In other 

words, you will see the same amount of them over time.” 

Analyses and Results. Did the decrease in the prevalence of blue dots cause 

participants’ concepts of blue to expand even when they were explicitly told that the 

prevalence of blue dots would decrease? To find out, we fit a binomial generalized linear 

mixed model to our data in R (26) using the lme4 package (27). The dependent variable 

was the participant’s identification of a dot as blue or not blue. The independent between-

participants variable was the participant’s condition (stable or decreasing). The 

independent within-participants variables were (a) the dot’s RGB value or what we will 

call its objective color (which ranged from 0% blue to 99.6% blue) and (b) the trial 

number (which ranged from 1 to 1000). We included condition, trial number, and 

objective color (and all interactions between them) as fixed effects in our model. We 

included as random effects (a) intercepts for participants (who may have entered our 

study with different thresholds) and (b) slopes for trial number. The inclusion of random 

intercepts significantly improved model fit relative to the baseline model, χ2(2) =692.36, 

p < 0.001, as did the inclusion of random slopes, χ2(2) = 229.86, p < 0.001. Additionally, 

the inclusion of the three-way interaction between condition, trial number, and objective 

color significantly improved model fit, χ2(1) = 117.91, p < 0.001. The generalized linear 
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mixed model revealed that a Condition X Objective Color X Trial Number interaction 

predicted participants’ identifications, b = 21.74, SE = 1.55, z = 14.00, 95% CI [17.83, 

25.77], ( )
2 0.93.GLMM cR =  All reported 95% confidence intervals are the result of a 

bootstrapping procedure using 1000 bootstrap samples.  

Figure S2 shows the percentage of dots of each color that participants in each 

condition identified as blue on the initial trials (1-200) and the final trials (800-1000). 

The positive slope of all curves indicates that in both conditions, participants’ 

identifications were highly correlated with the dot’s position on the color spectrum. But 

the two panels differ in an important way. The two curves panel A are nearly perfectly 

superimposed, indicating that participants in the stable condition were just as likely to 

identify a dot as blue when it appeared on a final trial as when it appeared on an initial 

trial. But the two curves in panel B are offset in the middle, indicating that participants in 

the decreasing condition were more likely to identify dots from the middle of the color 

spectrum as blue when those dots appeared on a final trial than when they appeared on an 

initial trial. In short, when blue dots became less prevalent, participants identified as blue 

some dots that they had earlier identified as not blue, and they did this even when they 

were explicitly warned about the decrease in prevalence. 

 

Methods for Study 3 

Overview. In Study 3, we replicated the procedure for Study 1, except that this 

time a third of the participants in the decreasing condition were explicitly instructed not 

to change their identifications of dots over the course of the study (“Do your best to 

respond the same way if you see it again later in the study”), and another third were given 
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the same explicit instruction and also offered a monetary reward for following it (“We 

will be awarding a bonus of $10 to the five most consistent participants in this study”). 

Sample. Participants were 92 students at Harvard University (34 males, 57 

females, Mage = 18.4 years, SD = 2.1 years) who received course credit in exchange for 

their participation. One female participant who was interrupted during the experimental 

session was excluded, leaving 91 participants in the data set.  

Procedures. The method for Study 3 was virtually identical to the method for 

Study 1 except for two things. First, we added two new conditions. Whereas participants 

in the stable condition and the decreasing condition were given the same instructions as 

they were given in Study 1, participants in the new conditions were given different 

instructions. Specifically, participants in the new decreasing+instruction condition were 

told that once they had identified a dot as blue or not blue “you should do your best to 

respond the same way if you see it again later in the study.” Participants in the new 

decreasing+instruction+incentive condition were told the same thing, and in addition, 

they were also told that “as an incentive, we will be awarding a bonus of $10 to the five 

most consistent participants in this study.” The second change to the method of Study 1 is 

that we reduced the number of trials from 1000 to 800. As such, the signal prevalence in 

the stable condition was 50% on trials 1-800, and the signal prevalence in the decreasing 

condition, the decreasing+instruction condition, and the decreasing+instruction+incentive 

condition was 50% on trials 1-200; 40% on trials 201-250; 28% on trials 251-300; 16% 

on trials 301-350; and 6% on trials 351-800.  

Analyses and Results. Did the decrease in the prevalence of blue dots cause 

participants’ concepts of blue to expand even when they were instructed, or instructed 
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and incentivized, not to let this happen? To find out, we fit a binomial generalized linear 

mixed model to our data in R (26) using the lme4 package (27). The dependent variable 

was the participant’s identification of a dot as blue or not blue. The independent between-

participants variable was the participant’s condition (stable or decreasing). The 

independent within-participants variables were (a) the dot’s RGB value or what we will 

call its objective color (which ranged from 0% blue to 100% blue) and (b) the trial 

number (which ranged from 1 to 800). We included condition, trial number, and objective 

color (and all interactions between them) as fixed effects in our model. We included as 

random effects (a) intercepts for participants (who may have entered our study with 

different thresholds) and (b) slopes for trial number. The inclusion of random intercepts 

significantly improved model fit relative to the baseline model, χ2(2) = 1084.00, p < 

0.001, as did the inclusion of random slopes, χ2(2) = 500.29, p < 0.001. Additionally, the 

inclusion of the three-way interaction between condition, trial number, and objective 

color significantly improved model fit, χ2(3) = 234.53, p < 0.001. The generalized linear 

mixed model revealed that a Condition X Objective Color X Trial Number interaction 

predicted participants’ identifications. Specifically, the stable prevalence condition 

differed significantly from the decreasing prevalence condition, b = 21.98, SE = 0.67, z = 

32.8, p < 0.001, 95% CI [18.44, 25.49], ( )
2 0.92,GLMM cR = the decreasing + instruction 

condition, b = 27.84, SE = 1.48, z = 18.8, p < 0.001, 95% CI [23.72, 31.88], and the 

decreasing + instruction + incentive condition, b = 15.34, SE = 1.29, z = 11.9, p < 0.001, 

95% CI [12.13, 18.38]. The decreasing + instruction condition also differed significantly 

from the decreasing prevalence condition, b = -5.86, SE = 0.71, z = -8.3, p < 0.001, 95% 

CI [-9.78, -1.91], as well as from the decreasing + instruction + incentive condition, b = -
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12.50, SE = 1.09, z = -11.5, p < 0.001, 95% CI [-16.14, -8.85]. Finally, the decreasing + 

instruction + incentive condition differed significantly from the decreasing prevalence 

condition, b = 6.64, SE = 0.67, z = 9.9, p < 0.001, 95% CI [3.56, 9.94]. (All reported 95% 

confidence intervals are the result of a bootstrapping procedure using 1000 bootstrap 

samples, and all reported p-values are adjusted for multiple comparisons using the Holm 

correction).  

Figure S3 shows the percentage of dots of each color that participants in each 

condition identified as blue on the initial trials (1-200) and the final trials (600-800). The 

positive slope of all curves indicates that in all conditions, participants’ identifications 

were highly correlated with the dot’s position on the color spectrum. But the panels differ 

in an important way. The two curves in panel A are nearly perfectly superimposed, 

indicating that participants in the stable condition were just as likely to identify a dot as 

blue when it appeared on a final trial as when it appeared on an initial trial. But in each of 

the other panels, the two curves are offset in the middle, indicating that participants in the 

three decreasing conditions were more likely to identify dots from the middle of the color 

spectrum as blue when those dots appeared on a final trial than when they appeared on an 

initial trial. In short, when blue dots became less prevalent, participants identified as blue 

some dots that they had earlier identified as not blue, and they did this even when they 

had been instructed and incentivized not to let that happen. 

 

Methods for Study 4 
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Overview. In Study 4, we replicated the procedure for Study 1, except that in 

Study 4 we decreased the prevalence of blue dots gradually for some participants (as we 

did in the previous studies) and abruptly for others. 

Sample. Participants were 37 students at Harvard University (12 males, 25 

females, Mage = 19.4 years, SD = 1.5 years) who received either money or course credit in 

exchange for their participation.  

Procedures. The method for Study 4 was virtually identical to the method for 

Study 1 except for two things. First, we reduced the number of trials from 1000 to 800. 

Second, we added a new condition. For participants in the stable condition, the signal 

prevalence on trials 1-800 was 50%. This condition was the same as the stable condition 

in Study 3. For participants in the gradually decreasing condition, the signal prevalence 

was 50% on trials 1-200; 40% on trials 201-250; 28% on trials 251-300; 16% on trials 

301-350; and 6% on trials 351-800. This condition was the same as the decreasing 

condition in Study 3. For participants in the new abruptly decreasing condition, the 

signal prevalence was 50% on trials 1-200, and 6% on trials 201-800. 

Analyses and Results. Did the decrease in the prevalence of blue dots cause 

participants’ concept of blue to expand even when the decrease occurred abruptly? To 

find out, we fit a binomial generalized linear mixed model to our data in R (26) using the 

lme4 package (27). The dependent variable was the participant’s identification of a dot as 

blue or not blue. The independent between-participants variable was the participant’s 

condition (stable, gradually decreasing, or abruptly decreasing). The independent within-

participants variables were (a) the dot’s RGB value or what we will call its objective 

color (which ranged from 0% blue to 100% blue) and (b) the trial number (which ranged 
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from 1 to 800). We included condition, trial number, and objective color (and all 

interactions between them) as fixed effects in our model. We included as random effects 

(a) intercepts for participants (who may have entered our study with different thresholds) 

and (b) slopes for trial number. The inclusion of random intercepts significantly 

improved model fit relative to the baseline model, χ2(2) = 234.49, p < 0.001, as did the 

inclusion of random slopes, χ2(2) = 48.32, p < 0.001. Additionally, the inclusion of the 

three-way interaction between condition, trial number, and objective color significantly 

improved model fit, χ2(1) = 72.52, p < 0.001. The generalized linear mixed model 

revealed that a Condition X Objective Color X Trial Number interaction predicted 

participants’ identifications. Specifically, the stable prevalence condition differed 

significantly from both the gradually decreasing prevalence condition, b = 15.92, SE = 

1.19, z = 13.3, p < 0.001, 95% CI [11.63, 20.36]], ( )
2 0.89,GLMM cR = as well as from the 

abruptly decreasing prevalence condition, b = 15.26, SE = 0.56, z = 27.3, p < 0.001, 95% 

CI [11.04, 19.45]. However, the gradually and abruptly decreasing prevalence conditions 

did not differ significantly from one another, b = 0.66, SE = 1.19, z = 0.6, p = 0.58, 95% 

CI [-3.96, 5.34]. (All reported 95% confidence intervals are the result of a bootstrapping 

procedure using 1000 bootstrap samples, and all reported p-values are adjusted for 

multiple comparisons using the Holm correction).  

Figure S4 shows the percentage of dots of each color that participants in each 

condition identified as blue on the initial trials (1-200) and the final trials (600-800). The 

positive slope of all curves indicates that in both conditions, participants’ identifications 

were highly correlated with the dot’s position on the color spectrum. But panels B and C 

differ from panel A in an important way. The two curves in panel A are nearly perfectly 
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superimposed, indicating that participants in the stable condition were just as likely to 

identify a dot as blue when it appeared on a final trial as when it appeared on an initial 

trial. But the two curves in panels B and C are offset in the middle, indicating that 

participants in the two decreasing conditions were more likely to identify dots from the 

middle of the color spectrum as blue when those dots appeared on a final trial than when 

they appeared on an initial trial. In short, when blue dots became less prevalent, 

participants identified as blue some dots that they had earlier identified as not blue, and 

they did this even when the decrease in prevalence happened abruptly. 

 

Methods for Study 5 

Overview. In Study 5, we replicated the procedure for Study 1, except that in 

Study 5, instead of decreasing the prevalence of blue dots in the experimental condition, 

we increased their prevalence. 

Sample. Participants were 23 students at Harvard University (11 males, 12 

females, Mage = 22.1 years, SD = 2.5 years) who received course credit in exchange for 

their participation. One female participant did not follow the experimenter’s instructions 

during the study and her data were excluded, leaving 22 participants in the data set. 

Procedures. The method for Study 5 was virtually identical to the method for 

Study 1 except that we replaced the decreasing condition with an increasing condition. 

The signal prevalence in the increasing condition was 6% on trials 1-200; 16% on trials 

201-250; 28% on trials 251-300; 40% on trials 301-350; and 50% on trials 351-1000.  

Analyses and Results. Did the increase in the prevalence of blue dots cause 

participants’ concepts of blue to contract (rather than to expand)? To find out, we fit a 
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binomial generalized linear mixed model to our data in R (26) using the lme4 package 

(27). The dependent variable was the participant’s identification of a dot as blue or not 

blue. The independent between-participants variable was the participant’s condition 

(stable or increasing). The independent within-participants variables were (a) the dot’s 

RGB value or what we will call its objective color (which ranged from 0% blue to 100% 

blue) and (b) the trial number (which ranged from 1 to 1000). We included condition, 

trial number, and objective color (and all interactions between them) as fixed effects in 

our model. We included as random effects (a) intercepts for participants (who may have 

entered our study with different thresholds) and (b) slopes for trial number. The inclusion 

of random slopes significantly improved model fit relative to the baseline model, χ2(2) = 

49.57, p < 0.001, as did the inclusion of random intercepts, χ2(2) = 386.15, p < 0.001. 

Additionally, the inclusion of the three-way interaction between condition, trial number, 

and objective color significantly improved model fit, χ2(1) = 15.12, p < 0.001. The 

generalized linear mixed model revealed that a Condition X Objective Color X Trial 

Number interaction predicted participants’ identifications, b = -8.13, SE = 1.40, z = -5.83, 

95% CI [-12.31, -4.05], ( )
2 0.89.GLMM cR =  (All reported 95% confidence intervals are the 

result of a bootstrapping procedure using 1000 bootstrap samples).  

Figure S5 shows the percentage of dots of each color that participants in each 

condition identified as blue on the initial trials (1-200) and the final trials (800-1000). 

The positive slope of all curves indicates that in both conditions, participants’ 

identifications were highly correlated with the dot’s position on the color spectrum. But 

the two panels differ in an important way. The two curves in panel A are nearly perfectly 

superimposed, indicating that participants in the stable condition were just as likely to 
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identify a dot as blue when it appeared on a final trial as when it appeared on an initial 

trial. But the two curves in panel B are offset in the middle, indicating that participants in 

the increasing condition were less likely to identify dots from the middle of the color 

spectrum as blue when those dots appeared on a final trial than when they appeared on an 

initial trial. In short, when blue dots became more prevalent, participants identified as not 

blue some dots that they had earlier identified as blue. 

 

 

Methods for Study 6 

Overview. In Study 6, we showed participants a series of computer-generated 

human faces on a computer screen and asked them to determine whether the person they 

saw (hereinafter referred to as the target) was a threat or was not a threat. Over the course 

of many trials, we decreased the prevalence of threatening targets for some participants. 

We predicted that these participants would respond to the decreasing prevalence of 

threatening targets by identifying some targets as threats whom they had previously 

identified as non-threats. 

Sample. Participants were 49 students at Harvard University (28 male, 20 female, 

and 1 gender unspecified, Mage = 20.8 years, SD = 2.0 years) who received either money 

or course credit in exchange for their participation. One male participant reported having 

a form of prosopagnosia (face blindness), and his data were excluded, leaving 48 

participants in the data set. 

Procedures. Upon arrival at the laboratory, participants were escorted to a room 

equipped with a computer display and keyboard, and they remained there for the duration 
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of the study. Participants were told that a series of target persons would appear on the 

screen, one at a time, and that their task was to decide whether each target person was or 

was not a threat, and to indicate their decision by pressing one of two keys on the 

keyboard that were respectively labeled “threat” and “no threat.” On each trial, a 

computer-generated image of a target person’s face appeared on a solid gray background. 

In previous research, Todorov and colleagues (28, 29) used a computational model to 

randomly generate a set of faces, and they then had human participants rate the 

threateningness of each face. We took the faces from this set that had been rated as most 

and least threatening, and we then used Fantamorph (30) to incrementally morph these 

faces into one another to produce a continuum of 60 computer-generated faces with 

expressions that ranged from not very threatening to very threatening. Sample faces are 

shown in Figure S6.  

Although the threateningness of a face is inherently subjective, for the sake of 

consistency we refer to the mean rating of each target as its objective threateningness. 

Each target appeared on the screen for 500 milliseconds and was then replaced by a 

question mark, which remained on the screen until participants pressed one of the 

response keys. Participants were told that there would be 800 trials divided into 16 

blocks, and that the prevalence of threatening targets might vary over blocks. Participants 

completed 10 practice trials to ensure that they understood the procedure, and then 

completed 800 test trials. To help participants remain attentive, we allowed them to take a 

break every 50 trials.  

We created two conditions by dividing the target continuum into two halves that 

we will refer to as the “no threat continuum” and the “threat continuum.” Half the 
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participants were randomly assigned to the stable condition. In this condition, we 

determined the threateningness of the target shown on each trial by randomly sampling 

the two continua with equal probability. We will refer to the probability that a target was 

sampled from the threat continuum as the signal prevalence. In the stable condition, the 

signal prevalence on trials 1-800 was 50%. The remaining participants were assigned to 

the decreasing condition. In this condition, we sampled the two continua with unequal 

probability on some trials. Specifically, in the decreasing condition, the signal prevalence 

was 50% on trials 1-200; 40% on trials 201-250; 28% on trials 251-300; 16% on trials 

301-350; and 6% on trials 351- 800.  

Analyses and Results. Did the decrease in the prevalence of threatening targets 

cause participants’ concepts of threat to expand? To find out, we fit a binomial 

generalized linear mixed model to our data in R (26) using the lme4 package (27). The 

dependent variable was the participant’s identification of a target as threatening or not 

threatening. The independent between-participants variable was the participant’s 

condition (stable or decreasing). The independent within-participants variables were (a) 

the target’s position on the continuum or what we will call its objective threateningness 

(which ranged from 0% threatening to 100% threatening) and (b) the trial number (which 

ranged from 1 to 800). We included condition, trial number, and objective 

threateningness (and all interactions between them) as fixed effects in our model. We 

included as random effects (a) intercepts for participants (who may have entered our 

study with different thresholds) and (b) slopes for trial number. The inclusion of random 

intercepts significantly improved model fit relative to the baseline model, χ2(2) = 649.03, 

p < 0.001, as did the inclusion of random slopes, χ2(2) = 974.24, p < 0.001.  Additionally, 
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the inclusion of the three-way interaction between condition, trial number, and objective 

threateningness significantly improved model fit, χ2(1) = 32.24, p < 0.001. The 

generalized linear mixed model revealed that a Condition X Objective Threateningness X 

Trial Number interaction predicted participants’ identifications, b = 4.84, SE = 0.86, z = 

5.61, 95% CI [3.12, 6.53], ( )
2 0.75.GLMM cR =  

 

Methods for Study 7 

Overview. In Study 7, we asked participants to play the role of a reviewer on an 

IRB. We showed participants a series of proposals for scientific studies and asked them 

to decide whether researchers should be prohibited from conducting the study or should 

be allowed to conduct the study. The proposals varied in their ethicality. Over the course 

of many trials, we decreased the prevalence of unethical proposals for some participants. 

We predicted that these participants would respond to the decrease in the prevalence of 

unethical proposals by rejecting some proposals that were ethically identical to those they 

had previously accepted. 

Whereas colors and computer-generated faces vary on physical continua that can 

be measured on a ratio scale, ethicality can at best be measured on an ordinal scale. As 

such, the materials and procedures for Study 7 differed somewhat from the materials and 

procedures used in our previous studies.  

Materials. We wrote 381 short proposals for scientific experiments involving 

human participants. The proposals contained between 5 and 37 words (M = 25.34 words). 

We used our own judgment to preliminarily classify each proposal as either ethical, 

ambiguous, or unethical. We then recruited 361 U. S. residents (198 male, 161 female, 2 
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gender unspecified) via Amazon Mechanical Turk and asked them to read and rate a 

subset of these proposals. We will refer to these participants as the raters. Raters were 

told that (a) the proposals described experiments that were designed to be conducted with 

adults who had volunteered to take part in exchange for money; (b) all the studies 

described in the proposals were research on human behavior; (c) when scientists lie to 

participants either before or during a study, they always tell those participants the truth 

when the study is over; and (d) participants are always free to withdraw from a study at 

any time.  

Each rater was paid $1 to read and rate 76 proposals. We divided the 381 

proposals into a set of 15 proposals that were seen by all raters (the constant set) and a set 

of 366 proposals that were seen by a subset of raters (the variable set). Specifically, the 

366 proposals were divided into 6 sets of 61 proposals (the variable sets), and each rater 

saw one of these 6 variable sets as well as the constant set of 15 proposals. Twenty-one of 

the proposals in each of the variable sets had been preliminarily classified as ethical, 23 

had been preliminarily classified as ambiguous, and 17 had been preliminarily classified 

as unethical. The 61 proposals in each of the variable sets were presented in random 

order, and after the 20th and 40th, and 61st proposals we included a “catch question” to 

ensure that raters were reading carefully (viz., “If you're actually reading this question, 

please select the number 3 as your response. Thank you for reading all the questions 

carefully”). Each rater first saw one of the 6 variable sets of 61 proposals, and then saw 

the 15 proposals in the constant set. After seeing each proposal, raters were asked the 

question “Should this experiment be allowed to be conducted?” which they answered 

using a 7-point Likert scale whose endpoints were anchored with the phrases “Definitely 
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not” (1) and “Definitely” (7).  Raters spent between 3.18 and 53.72 minutes (M = 16.09 

min) making their ratings. After they did so, raters completed several other measures 

including a Turing test (e.g., “If you’re reading this, type the word banana”), and 

supplied demographic information.  

We excluded the ratings of two male and three female raters who failed the 

Turing test, and then computed the mean rating of each proposal. Despite the fact that 

participants’ ratings were inherently subjective, for the sake of consistency we will refer 

to the mean of each proposal’s ratings as its objective ethicality. Each rater saw 76 

proposals. Fifteen of these proposals (the constant set) were seen by all raters, which 

allowed us to estimate how much the complete pool of raters agreed with regard to 

judgments of ethicality. Inter-rater reliability was quite high (Cronbach’s alpha = .85), 

indicating that raters were in very close agreement about the objective ethicality of the 

proposals. We used each proposal’s objective ethicality to classify it as a member of one 

of three categories. To ensure that we had a sufficient number of proposals in each of 

these categories, we classified proposals whose objective ethicality was greater than 6 

and less than or equal to 7 as ethical; proposals whose objective ethicality was greater 

than 4 and less than or equal to 6 as ambiguous; and proposals whose objective ethicality 

was less than or equal to 4 and greater than or equal to 1 as unethical. We then selected 

the proposals in each of the three categories whose objective ethicality ratings had the 

lowest standard deviations. Specifically, we selected 113 ethical proposals (e.g., 

“Participants will make a list of the cities they would most like to visit around the world, 

and write about what they would do in each one”), 80 ambiguous proposals 

(“Participants will be given a plant and told that it is a natural remedy for itching. In 
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reality, it will cause itching. Their reaction will be recorded”), and 80 unethical proposals 

(e.g., “Participants will be asked to lick a frozen piece of human fecal matter. Afterwards, 

they will be given mouthwash. The amount of mouthwash used will be measured”). 

These 273 proposals were used as materials in Study 7.   

Sample. Participants in Study 7 were 84 students at Harvard University (16 male, 

66 female, 2 gender unspecified, Mage = 20.73 years, SD = 2.8 years) who received either 

money or course credit for their participation.  

Procedures. Upon arrival at the laboratory, participants were escorted to a room 

equipped with a computer display and keyboard, and they remained there for the duration 

of the study. Participants were told that a series of proposals for scientific studies would 

appear on the screen, one at a time, and that their task was to decide whether researchers 

should or should not be allowed to conduct each study. They were asked to indicate their 

decision about each proposal by pressing one of two keys on the keyboard that were 

respectively labeled “approve” and “reject.” On each trial, participants read one of 273 

proposals. Each proposal appeared on the screen and remained there until participants 

pressed one of the response keys. Participants were told that there would be 240 trials 

divided into 10 blocks, and that the ethicality of the proposals might vary over blocks. 

Participants completed one practice trial to ensure that they understood the procedure, 

and then completed 240 test trials. To help participants remain attentive, we allowed 

them to take a break every 24 trials.  

We created two conditions. Half the participants were randomly assigned to the 

stable condition. In this condition, we determined the ethicality of the proposal on each 

trial by randomly sampling the three ethicality categories (ethical, ambiguous, and 
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unethical) with equal probability. We will refer to the probability that a proposal was 

sampled from the unethical category as the signal prevalence. In the stable condition, the 

signal prevalence on trials 1-240 was 33.3%. In the decreasing condition, we sampled the 

three categories with unequal probability on some trials. Specifically, in the decreasing 

condition, the signal prevalence was 33.3% on trials 1-96; 25% on trials 97-120; 16.6% 

on trials 121-144; 8.3% on trials 145-168; and 4.12% on trials 169-240.  

Analyses and Results. Did the decrease in the prevalence of unethical proposals 

cause participants’ concepts of unethical to expand? To find out, we fit a binomial 

generalized linear mixed model to our data in R (26) using the lme4 package (27). The 

dependent variable was a binary measure of whether a proposal was accepted or rejected. 

The independent between-participants variable was the prevalence of unethical proposals 

(stable or decreasing), and our independent within-participants variables were (a) the trial 

number (which ranged from 1 to 240) and (b) the objective ethicality rating of each 

proposal, which were reverse-scored for analysis so that 7 = “This experiment should 

definitely not be allowed” and 1 = “This experiment should definitely be allowed”. We 

included prevalence, trial number, and objective ethicality rating as fixed effects in our 

model, along with all interactions. We included as random effects (a) intercepts for 

participants (who may have entered our study with different thresholds) and (b) slopes for 

trial number. Model fit was significantly improved by both random slopes for trial, χ2(2) 

= 63.69, p < 0.001, and random intercepts for participants, χ2(2) = 404.51, p < 0.001. 

Additionally, the inclusion of the three-way interaction between condition, trial number, 

and objective ethicality rating significantly improved model fit, χ2(1) = 24.71, p < 0.001. 

The generalized linear mixed model revealed that a Prevalence X Objective Ethicality 
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Rating X Trial Number interaction predicted participants’ identifications, b = 5.10, SE = 

1.02, z = 4.98, 95% CI [3.09, 7.10], ( )
2 0.73.GLMM cR =  
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Fig. S1. Examples of Dots Used in Studies 1-5 
 

 

 
The color spectrum comprised 100 dots ranging from approximately RGB 100-0-155 
(very purple) to RGB 0-0-255 (very blue) and this figure shows (from left to right) the 1st, 
20th, 40th, 60th, 80th, and 100th dots. The three dots on the left are from the purple 
spectrum and the three dots on the right are from the blue spectrum. 
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Fig. S2: Results for Study 2 

 

 
Panel A shows the stable prevalence with warning condition and panel B shows the 
decreasing prevalence with warning condition. The x-axes show the dot’s objective color 
(i.e., its location on the spectrum) and the y-axes show the percentage of trials on which 
participants identified that dot as blue. 
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Fig. S3: Results for Study 3 

 
 

Panel A shows the stable prevalence condition, panel B shows the decreasing prevalence 
condition, panel C shows the decreasing prevalence + instruction condition, and panel D 
shows the decreasing prevalence + instruction + incentive condition. The x-axes show the 
dot’s objective color (i.e., its location on the spectrum) and the y-axes show the 
percentage of trials on which participants identified that dot as blue. 
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Fig. S4: Results for Study 4 

 

 

Panel A shows the stable prevalence condition, panel B shows the gradually decreasing 
prevalence condition, and panel C shows the abruptly decreasing prevalence condition. 
The x-axes show the dot’s objective color (i.e., its location on the spectrum) and the y-
axes show the percentage of trials on which participants identified that dot as blue.  
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Fig. S5: Results for Study 5 

 

 

Panel A shows the stable prevalence condition, and panel B shows the increasing 
prevalence condition. The x-axes show the dot’s objective color (i.e., its location on the 
spectrum) and the y-axes show the percentage of trials on which participants identified 
that dot as blue.  
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Fig. S6: Examples of Computer-Generated Faces Used in Study 6 

 

 

The target person continuum ranged from 1 (not threatening) to 60 (very threatening) and 
this figure shows (from left to right) faces 1, 10, 20, 30, 40 50, and 60. The four target 
persons on the left are from the no threat continuum and the three target persons on the 
right are from the threat continuum.  
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