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Materials and Methods 

Experimental system 

The used experimental apparatus is similar to as described in earlier works, see Refs. 6,14 

of the main text for details. Our optical microcavity consists of two ultra-high reflectivity mirrors 

with reflectivity above 99.998% of R=1m curvature spaced by a distance of D01.4μm. The cavity 

is filled with rhodamine dye dissolved in ethylene glycol (concentration: 10-3 mol/l). At room 

temperature, rapid transverse decoherence caused by collisions of solvent molecules with the dye 

suppresses the formation of polaritons (30,31). Importantly, this also prevents Rabi oscillations of 

the molecules, meaning that the oscillations of the photon number observed in the oscillatory 

condensate regime cannot be attributed to a coherent evolution, but are rather due to the weakly 

dissipative character of the dye microcavity system. The small mirror spacing causes a large 

frequency spacing between adjacent longitudinal optical modes that is comparable with the 

emission width of the dye molecules. In this regime we observe that to good accuracy the resonator 

is only populated with photons of a fixed longitudinal mode, q=7 here, and the two transverse 

modal degrees of freedom make the system two-dimensional. The dye microcavity is pumped with 

a laser beam of 532 nm wavelength at an angle near 45° with respect to the optical axis. To suppress 

pumping of the dye into triplet states and excessive heating, the pump pulses are acousto-optically 

chopped into 500ns long pulses at a 50 Hz repetition rate. 

 

In the cavity the dispersion relation due to the short mirror spacing is modified with respect to free 

space and acquires quadratic, i.e. massive particle-like, character. The transverse TEM00 mode 
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becomes the lowest populated eigenmode, which acts as a low-frequency cutoff at energy 

c=hc/λc, where λc is the cutoff wavelength. Further, the mirror curvature leads to harmonic 

confinement of the photon gas, making the photons equivalent to a two-dimensional, harmonically 

confined gas of massive bosons with effective mass meff= ħωc/(c/n)2, where c denotes the speed of 

light and n1.43 is the refractive index of the solvent ethylene glycol. For such a system it is known 

that a BEC exists at thermal equilibrium conditions (32). 

 

Thermal equilibrium of photons in the cavity is achieved as the photons are absorbed and re-

emitted many times by the dye molecules. The used rhodamine dye fulfills the Kennard-Stepanov 

relation to good accuracy (33). This universal thermodynamic frequency scaling between 

absorption and emission is well known to apply for systems with rovibrational spectra on top of 

both lower and upper electronic levels in equilibrium. The conversion of photons into dye 

electronic excitations and vice versa (right panel of Fig. 1A of the main text) can be seen as an 

exchange of both energy and particles with the dye which acts as a reservoir in the grand canonical 

sense. These multiple absorption and re-emission processes induce a thermal spectral distribution 

of the photon gas at the temperature of the dye rovibrational excitations, which are at room 

temperature. Given that thermal emission is negligible in the limit of ħωc ( 2.1eV) >> kBT 

(1/40eV), temperature and chemical potentials are independently tunable. This is a striking 

difference to the usual case of black-body radiation where photons vanish in the system walls upon 

lowering the temperature instead of exhibiting condensation. In the dye microcavity system, both 
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photon gas thermalization with a freely adjustable chemical potential and Bose-Einstein 

condensation has been observed in earlier works, see Refs.11,23,24 for details. 

 

To experimentally monitor the number statistics of the photon condensate, the transmission of one 

of the microcavity mirrors following a mode filter is directed onto a fast photomultiplier. The mode 

filter separates the (TEM00) condensate mode from the higher transverse modes forming the 

thermal cloud by transmission through two optical pinholes acting as a real space and a momentum 

filter, respectively. In addition, a polarizer is placed into the detection path, removing the 

polarization degeneracy. The electronic signal of the used photomultiplier (Photek PMT 210) is 

analyzed with a fast oscilloscope, yielding a correlation signal from the time-resolved 

photomultiplier signal traces. This signal is used as a measure for the time-dependent second-order 

coherence g(2)() of the photon condensate. Experimental data for g(2)() was recorded in 5 different 

measurement runs, sampling dye microcavity emission signals acquired within 3·104 pump beam 

pulses each. In each of the measurement runs data for different pump beam powers was recorded 

so as to vary the condensate size, with calibration of the photon number obtained by simultaneously 

recording spectra of the dye microcavity emission. The spectra relate the condensate mode 

population to the photon number in the thermal cloud, the latter equaling the critical number 
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 for the used trap frequency   2·40 GHz. The data used for further 

analysis are averages of the second-order coherence functions for different mean photon numbers 

n with a number bin size of 250 photons, as shown in the top panels of Fig. 1C for two different 
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values of n . In preparatory measurements with a pulsed laser source, the time resolution of the 

detection system for measurements of the second-order coherence was determined to be 500ps. 

 

Theoretical model 

The dynamics of photons coupled to the dye reservoir can be modeled with the following 

set of rate equations: 

  nnMBnMB
dt

nd

gabseem
−−+= )1( ,   (S1a) 

 
g

p
gabseem

e

MRnMBnMB
dt

Md
+−+−= )1( ,  (S1b) 

where n  denotes the time-dependent expectation value of the number of photons in the 

condensate mode and 
g

M  and 
e

M  describe the time-dependent number of dye molecules in 

electronic ground and excited states, respectively, with 
ge

MMM +=  as the total molecule 

number. Further, Babs and Bem denote the Einstein coefficients for absorption and emission, 

respectively, which are related by the Kennard-Stepanov relation, Bem/Babs=exp(-(ω-ωZPL)/kBT), 

where ωZPL  2c/545nm and T300K denote the frequency of the zero-phonon line for rhodamine 

and the temperature of the dye bath, respectively. Further,  denotes the photon loss and Rp the 

pump rate, respectively. In the absence of pumping and loss, with the sum 
e

MnX +=  of the 

photon number and dye molecular electronic excitations being strictly conserved, the dynamics 

can be described by eq. S1a alone, predicting the fluctuation properties of grand canonical Bose-

Einstein condensation, as described in previous work (34-38), see also Ref. 14. For a large relative 

size of the dye reservoir, that is Meff>> n
2, where Meff=M/(2+2cosh((ωc-ωZPL)/kBT)) (

e
M for the 

detuning values chosen here) denotes the effective reservoir size, grand canonical conditions are 
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fulfilled, and in the condensed state, photon number fluctuations of order of the average particle 

number emerge. In this limit, the normalized second-order photon coherence function of the 

condensate reaches g(2)(0)=2, i.e., is the same as for a thermal source. On the other hand, when the 

effective reservoir size is small, for Meff<< n
2, the particle-number fluctuations reduce to a 

Poissonian level, i.e., they resemble the number statistics of a “usual” canonical ensemble 

condensate, or of a laser. By varying effective relative size of the reservoir, the second-order 

coherence of the photon condensate can be tuned between g(2)(0)=1 and g(2)(0)=2. 

 

The dynamics of fluctuations of the photon number 𝛥𝑛 = ⟨𝑛⟩ − 𝑛̄ and the total number of 

excitations XXX −=  of the open system is described by eqs. 1-2 of the main text. These 

equations are obtained by linearizing around the average values. Remember here that n  and X  

denote the average values (i.e. averaged over times longer than the correlation time) of the 

condensate mode photon number and sum of excitations respectively,  while ⟨𝑛⟩ and ⟨𝑋⟩ denote the 

instantaneous expectation values at time t. 

 

The response to an instantaneous fluctuation of the photon number occurring at a time t0 around 

the average value n  can be written in the form


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 where C1 and C2 are constants, with 

))1((
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++=   and ( )nBBnXB
absemem

)(/
2

1
++= . For the case of n >>1 and a 

large negative dye-cavity detuning Δ = ωc-ωZPL <-kBT/  relevant here, we have Bem>>Babs and 

e
M >> n , so that the formulas reduce to the simplified forms given in the main text. In our 
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experiment, we monitor the grand canonical system undergoing thermally (and quantum-

mechanically) driven statistical fluctuations under stationary conditions by analyzing the second-

order correlation function  𝑔(2)(𝜏) =
𝑛(𝑡)∙𝑛(𝑡+𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛(𝑡)̅̅ ̅̅ ̅̅ ∙𝑛(𝑡+𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   of condensate mode photons. The open grand 

canonical system is reminiscent of a stochastically driven damped harmonic oscillator as readily 

seen when writing Eq. (1) of the main text as a second order differential equation, yielding the 

quoted eigenvalues 1,2. The expected second-order coherence function of condensate photons can 

be written as  

 ( ) ( )

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−−+−++=

−−−− 


2

0

22

0

2
22

0

22

0

)2(
1)( eZiYeZiYeg .  (S2) 

Other than in the more compact formula given in the main text, the constants introduced in eq. S2 

(Y and Z) are real numbers on both sides of the phase transition, which is helpful for the fitting 

procedure.  

 

Furthermore, from eqs. S1 we can readily determine the steady state values for the photon number 

n  and the population of the upper electronic states 
e

M . In the limit of small losses (
gabs

MB

) relevant here, i.e., photons are reabsorbed (and thermalized) faster than they leave the cavity, eq. 

1a in the steady state limit yields 
emabsge

BBMM / . That is, for 
absem

BB  we have 

ge
MM   so that MM

g
 . Using eq. S1b we furthermore find /MRn

p
 , which expresses 

that in the open system the average photon number in the cavity is tunable by the pumping strength. 

Typical experimental numbers for a cutoff wavelength c571.3 nm, corresponding to a dye-cavity 

detuning Δ=ωc-ωZPL  -4.1  kBT/  for rhodamine dye, are Bem  23.9 kHz and Babs  420 Hz, and a 

cavity loss  2.3GHz. For a molecule number M5109, we have 
e

M  8.8107. For typical 
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condensate photon numbers, which are up to 5·105, the limits given above are fulfilled with good 

accuracy. 

 

The number statistics of the photon condensate is characterized by the crossing of two eigenvalues 

of the matrix A (eqs. (1-2) in the main text) characterizing the fluctuations in the system. Due to 

the driven-dissipative nature of the system, the matrix A=A(s) describing the two-component 

system of photons coupled to the dye reservoir is non-Hermitian. Here s denotes a set of system 

parameters; relevant to the described measurements are the average photon number n , which 

experimentally is controlled by the pump power, the cutoff wavelength, and the dye concentration, 

and we have (s) and 0(s) damping rate and oscillation frequency respectively. The eigenvalues 

of the non-Hermitian 2x2 matrix A(s) can be either both real or both complex: Two real 

eigenvalues mean biexponential damping of the fluctuations, while complex eigenvalues mean 

damped oscillatory behavior. A crossing of the two eigenvalues occurs in the complex plane for a 

certain value of the parameters s=sEP, see also the discussion in the main text. This is the 

exceptional point where the two eigenvalues coalesce. The gap between the eigenvalues 1 and 2 

of the non-Hermitian matrix A(s) opens in the real or the imaginary plane on different sides of the 

exceptional point. 

 

At the exceptional point, small changes of s can lead to qualitative changes of the state one is in, 

i.e. biexponential or oscillatory decaying respectively. Critical behavior of common (equilibrium) 

phase transitions is here rather replaced by the sensitivity of the phase one is in to changes in the 

control parameter s, which becomes large near the excepitional point at =0, which we understand 
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as the point of the phase transition.  On the other hand, the condensate will remain in the 

biexponential or the oscillatory phase both for >>0 and for <<0 respectively upon small 

changes in s, i.e. when being deep in one of the corresponding phases. 

As discussed in the main text, Fig. 2B represents the expected phase diagram in a three-

dimensional plot, showing the biexponential and the oscillatory condensate phases and, for large 

losses (near MB
abs

 , see Ref. 28), the crossover to lasing. One may write the condition ω0=δ 

for the position of the exceptional point between the two dissipative phases in the form 
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eem
MB =:'  (scaled loss rate) and 

e
Mn /:=  (scaled photon number), this formula 

reduces to the universal form 






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
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1

4

1
' 


 . The expected phase diagram thus collapses to 

the two-dimensional form used in Fig. 4A of the main text. In terms of the scaled variables, the 

theory values for the undamped oscillation frequency and damping constant can be expressed as 

 '/
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eem
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


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


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1

2

1
/

eem
MB . 

 

Data analysis 

The experimental data for the second-order coherence function has been fitted with the 

theory prediction of eq. S2, which is valid on both sides of the phase transition, using ω0, , Y, and 

Z (all being real numbers) as fit parameters. Depending on the difference -ω0 being positive or 

negative, the resulting second-order coherence function is biexponential or oscillatory, 

respectively. Experimental data for the difference -ω0, along with corresponding uncertainties, is 

shown in Fig. 3A of the main text for different average photon numbers for one of the five recorded 
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data sets, (see Table S1). The black lines in the top panels of Fig. 1C of the main text show the fit 

results for two individual correlation data measurements.  

 

In the oscillatory phase (ω0>δ) the second-order coherence of eq. S2 takes the explicit form 

( ) ( )( )
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0

'

20
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/)2(
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c
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00
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C , ''

1
C  and ''

2
C  here again are real numbers.  

 

Figures 3B,C of the main text show the variation of the observed decay times 
ci

  and, for the case 

of the oscillatory phase, the oscillation frequency  on the average photon number (data set 1). 

For a fitting of such data, the expected variation of the undamped oscillation frequency 

nB
em

 
0

 and damping constant ( )nBnMB
emabs

+ /
2

1
  on the average photon number n

was assumed, where the molecule number M and the loss  are free fit parameters. For the form 

of the damping constant   given here, we have used the relation 
emabse

BBMM /  for the 

population of the upper electronic state of the dye molecules. The Einstein coefficients Babs and 

Bem for the corresponding wavelength have been determined by extracting the coefficient Babs from 

absorption measurements in an independent spectroscopic measurement performed on a 

macroscopic dye cuvette (37), and determining Bem for the corresponding wavelength using the 

Kennard-Stepanov relation Bem = Babs exp(-(ω-ωZPL)/kBT).  
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The data points in Fig. 4A of the main text summarize the results of correlation data recorded in 

all five measurement data sets, and Extended Data Table 1 gives the obtained fit results. In Fig. 4 

of the main text, the experimental data is plotted for the scaled variables described in the previous 

section, allowing to combine results recorded at different cavity cutoff wavelengths in the single 

diagrams shown. Note that, given that both  and 0 are proportional to 
eem

MB , this scaling 

also holds for the oscillation frequency  and the inverse damping rates 1/ci. 

 

Supplementary Text 

Microscopic derivation of the rate equations 

The derivation of the rate equations S1 is detailed in Ref. 6. Briefly, the rate equations describing 

the dynamics of the photon condensate can be obtained via a Lindblad master equation that follows 

from a microscopic quantum-mechanical model (6,39,40) describing the dye molecules, their 

vibrational modes or phonons, and the coupling to the photon modes of the cavity. Due to fast 

collisions of the dye with solvent molecules, the phonon excitations may be considered to be in 

thermal equilibrium at ambient temperature and treated as a reservoir to be integrated out. The 

Hamiltonian (also known as the Tavis-Cummings-Holstein model) for a collection of M molecules 

and multiple cavity modes reads 

         ,        (S3) 

where the cavity modes, ak, ak 
†, have dispersion ωk, and the zero-phonon line of the dye molecules 

is defined by ωZPL. σm
z and σm

± are the Pauli z-matix and the raising/lowering operators in the two-
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dimensional space of electronic ground and excited states of dye molecule m, respectively. The 

vibrational frequency is Ω, and S describes the coupling of the phononic oscillator potential to the 

electronic transition. Since the phonon position operators are 𝑥̂𝑚 ∼ (𝑏𝑚 + 𝑏𝑚
† ), we understand 

from σm
z = σm

+σm
− − σm

−σm
+ that the effect of this term is a displacement of the center of the 

phononic oscillator, with the sign depending on whether the molecule is in the electronic ground 

or excited state. Finally, a Jaynes-Cummings coupling between photons and dye is included via 

the small parameter g. 

 

The molecular part of the Hamiltonian can be diagonalized by means of a polaron transformation, 

which leads to an effective, nonlinear coupling between photons and molecules, mediated by the 

phonon excitations of the dye. It is then possible to bring H into a form suitable for a perturbative 

expansion in g while treating the molecular vibrations as a reservoir. After expanding to second 

order in g, and discarding inter-molecular correlations as well as the coherent, first-order 

contribution (6), by making the well-known Born-Markov and secular approximations, one arrives 

at the master equation (6,27,40). 
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  (S4) 

where we have also included the photon resonator loss κ, the external pump rate Rp, and the 

imperfect quantum efficiency γ of the molecules. The frequency-dependent, incoherent coupling 

coefficients Γ𝑘
± = 2𝑅𝑒𝐾(±[ω𝑘 − ωZPL]), which give rise to the photon absorption and emission 

processes, respectively, are defined as 

     (S5) 

Note that for the weak external pumping employed in our experiments, the influence of the rapid 

relaxation of the reservoir on the broadening of the molecular spectrum described by K(ω) is much 

larger than any additional broadening due to Rp and γ. It is, therefore, valid to assume that Γ𝑘
±

 

remain constant over the experimentally explored range of the external pumping strength. 

Alternatively, a quantum Langevin equation can be derived at the level of the master equation (S4). 

 

The rate equations (cf. Eqs. 1) can now be obtained from the master equation (S4) by calculating 

the equations of motion for the time-dependent expectation values of the photon number in cavity 

mode m, 〈𝑛𝑘〉(t), and the number of excited molecules, 〈𝑀𝑒〉 (t). In terms of operators these 

equations read, 
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               ,               (S6)           

 ,          (S7) 

where the average is 〈𝐴〉 (t) = Tr{Aρ(t)}. Assuming that the molecules are all identical, one can 

drop the molecular index and replace the sum over the M molecules in Eq. (S6) by a factor of M. 

Summing over m also in Eq. (S7), we arrive at 

                      ,        (S8)   

     .     ( S9) 

A further simplification arises from the fact that for large dye reservoir, the occupation of a given 

cavity mode m and the total molecule excitation number are uncorrelated, i.e. their correlation 

factorizes, 

                                                                   .                                             (S10) 

This closes the set of equations S8. For a single photon mode  〈𝑛〉 = 〈𝑎0
†𝑎0〉, and with the ground-

mode emission and absorption coefficients 

                                                                                                                        (S11) 

this represents the rate equations 1 and completes the derivation of the rate equations from the 

microscopic quantum mechanical model. Two further remarks are at place here. First, observe that 
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the total excitation number 〈𝑋〉: = 〈𝑛〉 + 〈𝑀𝑒〉, conserved without external driving or loss, obeys 

the much simpler equation 

                            ∂t〈𝑋〉 = −κ〈𝑛〉 + Rp (M −〈𝑀𝑒〉) − γ〈𝑀𝑒〉 

                      = −(κ − (Rp + γ)) 〈𝑛〉− (Rp + γ) 〈𝑋〉 + RpM,           (S12) 

where the emission and absorption terms present in Eqs. (S8) and (S9) have canceled and only 

drive and loss terms remain. The fact that ∂t〈𝑋〉≠ 0 distinguishes the driven-dissipative photon-dye 

system from a perfectly closed system and is ultimately responsible for the oscillatory second-

order coherence dynamics. Second, in the closed limit κ, Rp,γ → 0, the rate equations predict a 

steady-state Bose-Einstein distribution in the long-time limit (41) 

                                   , (S13) 

where we have used Eq. (S.6) for the first, and Eq. (S.7) and the Kennard-Stepanov relation 

Γ𝑘
+/Γ𝑘

− = ⅇβ(ω𝑘−ωZPL) for the second equality. The first equality is important for the description of 

the phase diagram, as we will see in the following note. 

 

Fluctuations around the steady state 

Here we address the derivation of the dynamics of the photon-number fluctuations ∆n and 

the excitation-number fluctuations ∆X, as described by Eqs. (1) and (2) in the main text. Defining 
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the deviations from the steady state as ∆n(t) := 〈𝑛〉(𝑡) − 𝑛̅, ∆Me(t) := 〈𝑀𝑒〉(𝑡)-𝑀𝑒
̅̅ ̅̅  and ∆X := 

〈𝑋〉(𝑡) − 𝑋̅, the photon-number fluctuations obey the regression law 

  (S14) 

where we have introduced . The excitation-number fluctuations 

follow analogously, 

                              ∂t∆X = −(κ − (Rp + γ))∆n − (Rp + γ)∆X  ≈  −κ∆n. 

Taking the equilibrium distribution from (S13), we can write 

(S15)   

 , (S16) 

from which we find 

  (S17) 

with 2δ = 𝐵ⅇm𝑀𝑒/𝑛 + ω0
2/𝜅. As stated in the main text, Eq. (2), we therefore have in matrix 

form, 

  . (S18) 

The eigenvalues of this non-Hermitian matrix determine the behaviour of the second-order 

coherence function via the quantum regression theorem, which in this case states that the density-

density correlations of spontaneous fluctuations obey the same regression law as the relaxation 
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towards the steady state after a small perturbation, as given by Eq. (S18). For completeness, a 

detailed proof of this statement is given in the subsequent section. 

Second order coherence dynamics 

Here we give the formal proof that Eq. (S18) also applies to the dynamics of the second-

order correlation function. The time-dependent photon density-density or second-order correlation 

function is defined as (41) 

                           (S19) 

where ℒ ̂is the total superoperator defined by the master equation (S4), the steady-state density 

matrix is defined as ρ∞ = limt→∞ ρ(t), and we introduced an effective density operator defined by 

𝜌̃∞ := a†aρ∞. We note in passing that, for the normal-ordered second-order correlation function, 

one would need to set 𝜌̃∞ = aρ∞a†. Defining also the corresponding effective average 〈〈𝐴〉〉(τ) := 

TrA𝑒 ℒ̂𝜏𝜌̃∞, the second-order coherence becomes 

                                                                .                                                     (S20) 

The effective averages 〈〈𝑛〉〉 and 〈〈𝑀𝑒〉〉 obey almost the same equations as 〈𝑛〉 and 〈𝑀𝑒〉, the only 

difference arising from the fact that the trace of the effective density matrix does not vanish, Tr 𝜌̃∞ 
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= 𝑛̅, which gives RpM Tr[σ−σ+𝜌̃∞] = Rp (𝑛̅M −〈〈𝑀𝑒〉〉). Thus, one finds equations of motion formally 

analogous to the rate equations, 

              ,                          (S21) 

          .    (S22) 

It is important to note that the form of these equations is independent of the operator ordering in 

the definition of g(2)(τ) in Eq. (S19). Their structure is determined by ℒ ̂rather than the per se 

arbitrary effective density matrix. What does change are the initial conditions. This, however, is 

negligible for the relatively large photon numbers relevant here, with the difference being on the 

order of 1/𝑛̅. The relation between the rate equations and (S21), (S22) may also be understood a 

the density-matrix ansatz. If ρ∞ is represented as a diagonal matrix with elements 𝑃𝑛𝑀𝑒

∞ , then 𝜌̃∞ 

will also be diagonal with elements 𝑃̃𝑛𝑀𝑒

∞ (τ = 0) = 𝑛𝑃𝑛𝑀𝑒

∞ . These provide the initial conditions for 

a system of equations formally identical to that for 𝑃𝑛𝑀𝑒
. 

To truncate and close the hierarchy of expectation values in Eqs. (S.19) and (S.20), the higher-

order moments 〈〈𝑀𝑒〉〉 need to be factorized, which can be done using a Gaussian identity for 𝑃𝑛𝑀𝑒
 

applied to the steady-state expectation values, i.e. 

                                                    ,                                   (S23) 

where the average is 
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                                                                .                  (S24) 

However, since 

                                         ,                           (S25) 

Eq. (S23) also implies, 

                                   .                            (S26) 

Introducing furthermore the vector 

                                       ,                                (S27) 

Eqs. (S21) and (S22) become 

 

(S28a) 

(S28b) 

Using the steady-state solutions of the rate equations to eliminate the curly brackets, one arrives 

at the linear system 

                                  (S29) 
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Under the various simplifying assumptions made in the main text ( , validity of Eq. S13), 

this general set of equations is equivalent to Eq. (S18). In this way, we have formally rederived 

that, for the assumptions made, the steady-state density-density correlations indeed follow the 

same dynamics as small fluctuations around the steady state. 

 

  



 

 

21 

 

 

 

Data set c(nm) Babs(s-1) κ (ns-1) M 

1 571.3 420 2.2(2) 4.76(3) ∙ 109 

2 570.4 490 1.7(1) 6.53(1) ∙ 109 

3 570.4 490 2.6(1) 4.08(14) ∙ 109 

4 570.4 490 2.5(1) 2.04(3) ∙ 109 

5 575 219 2.7(3) 1.83(2) ∙ 109 

 

Table S1: Summary of experimental parameters and fit results for the five different data sets, recorded with 

different cavity cutoff wavelengths c (see second column) and dye concentrations. Both cavity loss  and dye 

molecular number M are fit results (final two columns). The Einstein coefficient for emission Bem can be determined 

from the quoted Einstein coefficient for absorption Babs for the corresponding wavelength using the Kennard–

Stepanov relation. 
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