PT - JOURNAL ARTICLE AU - Allen, GJ AU - Muir, AU - Sanders, D TI - Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose AID - 10.1126/science.7732384 DP - 1995 May 05 TA - Science PG - 735--737 VI - 268 IP - 5211 4099 - http://science.sciencemag.org/content/268/5211/735.short 4100 - http://science.sciencemag.org/content/268/5211/735.full SO - Science1995 May 05; 268 AB - Calcium mobilization from intracellular pools couples many stimuli to responses in plant cells. Cyclic adenosine 5'-diphosphoribose (cADPR), which interacts with a ryanodine receptor in certain animal cells, was shown to elicit calcium release at the vacuolar membrane of beet storage root. The vacuolar calcium release pathway showed similarities to cADPR-gated calcium release in animal cells, including inhibition by ruthenium red, ryanodine activation, and high affinity for cADPR [Michaelis constant (Km) = 24 +/- 7 nanomolar]. Analysis by patch-clamping demonstrated that the cADPR-gated pathway in beet is voltage-dependent over the physiological range, does not spontaneously desensitize, and is colocalized with an inositol 1,4,5-trisphosphate (InsP3)-gated calcium release pathway in individual vacuoles.